Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A 40-basepair VNTR polymorphism in the dopamine transporter (DAT1) gene and the rapid response to antidepressant treatment

Abstract

Finding predictors of the response to antidepressant therapy is a major goal of molecular psychiatry. The genes encoding the serotonin (SERT) and dopamine (DAT1) transporters are among the possible candidate genes modulating an individual's antidepressant response. In a naturalistic prospective cohort study with a total of 190 fully assessed patients, improvement of depression symptoms during the 3 weeks following initiation of antidepressant therapy was recorded using the 21-item Hamilton Depression Rating Scale (HDRS). The SLC6A3 3′ UTR 40-bp variable number of tandem repeats (VNTR) and the SLC6A4 5′ 44-bp insertion/deletion polymorphism were analyzed by polymerase chain reaction. There was a significantly smaller number of rapid responders among homozygous carriers of the DAT1 9-repeat allele (9/9) than among heterozygous (9/10) and homozygous (10/10) carriers of the 10-repeat allele (19 versus 37 versus 52%, respectively, P=0.0037). Median decline in HDRS score was 35, 40, and 52% in patients with the 9/9, 9/10, and 10/10 genotypes, respectively (P=0.013). The effect was found in all classes of medications (selective serotonin reuptake inhibitors (SSRIs), tricyclics, mirtazapine, venlafaxine) and statistically significant also within the subgroup of patients having received SSRIs. The serotonin promoter insertion/deletion genotype had no effect in the entire study group, but there was an insignificant trend of better response in the l/l and l/s carriers who received SSRIs or mirtazapine. In conclusion, the dopamine transporter VNTR polymorphism influenced rapid response to antidepressant therapy. Compared with homozygous carriers of the 10-repeat allele, carriers of the 9/10 genotype had an odds ratio (OR) calculated by logistic regression analysis of 1.6 (95% CI 0.8–3.2) and carriers of the 9/9 genotype had an OR of 6.0 (1.5–24.4) for no or poor response. Further studies are required to confirm this clinical association and to elucidate the underlying mechanisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Kirchheiner J, Nickchen K, Bauer M, Wong ML, Licinio J, Roots I et al. Pharmacogenetics of antidepressants and antipsychotics: the contribution of allelic variations to the phenotype of drug response. Mol Psychiatry 2004; 9: 442–473.

    Article  CAS  PubMed  Google Scholar 

  2. Murphy Jr GM, Hollander SB, Rodrigues HE, Kremer C, Schatzberg AF . Effects of the serotonin transporter gene promoter polymorphism on mirtazapine and paroxetine efficacy and adverse events in geriatric major depression. Arch Gen Psychiatry 2004; 61: 1163–1169.

    Article  CAS  PubMed  Google Scholar 

  3. Lesch KP, Bengel D, Heils A, Sabol SZ, Greenberg BD, Petri S et al. Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science 1996; 274: 1527–1531.

    Article  CAS  PubMed  Google Scholar 

  4. Zanardi R, Benedetti F, Di Bella D, Catalano M, Smeraldi E . Efficacy of paroxetine in depression is influenced by a functional polymorphism within the promoter of the serotonin transporter gene. J Clin Psychopharmacol 2000; 20: 105–107.

    Article  CAS  PubMed  Google Scholar 

  5. Zanardi R, Serretti A, Rossini D, Franchini L, Cusin C, Lattuada E et al. Factors affecting fluvoxamine antidepressant activity: influence of pindolol and 5-HTTLPR in delusional and nondelusional depression. Biol Psychiatry 2001; 50: 323–330.

    Article  CAS  PubMed  Google Scholar 

  6. Roy A, Pickar D, Linnoila M, Doran AR, Ninan P, Paul SM . Cerebrospinal fluid monoamine and monoamine metabolite concentrations in melancholia. Psychiatry Res 1985; 15: 281–292.

    Article  CAS  PubMed  Google Scholar 

  7. Brunswick DJ, Amsterdam JD, Mozley PD, Newberg A . Greater availability of brain dopamine transporters in major depression shown by [99 m Tc]TRODAT-1 SPECT imaging. Am J Psychiatry 2003; 160: 1836–1841.

    Article  PubMed  Google Scholar 

  8. Smith TD, Kuczenski R, George-Friedman K, Malley JD, Foote SL . In vivo microdialysis assessment of extracellular serotonin and dopamine levels in awake monkeys during sustained fluoxetine administration. Synapse 2000; 38: 460–470.

    Article  CAS  PubMed  Google Scholar 

  9. Kugaya A, Seneca NM, Snyder PJ, Williams SA, Malison RT, Baldwin RM et al. Changes in human in vivo serotonin and dopamine transporter availabilities during chronic antidepressant administration. Neuropsychopharmacology 2003; 28: 413–420.

    Article  CAS  PubMed  Google Scholar 

  10. Ichikawa J, Meltzer HY . Effect of antidepressants on striatal and accumbens extracellular dopamine levels. Eur J Pharmacol 1995; 281: 255–261.

    Article  CAS  PubMed  Google Scholar 

  11. Georgieva L, Dimitrova A, Nikolov I, Koleva S, Tsvetkova R, Owen MJ et al. Dopamine transporter gene (DAT1) VNTR polymorphism in major psychiatric disorders: family-based association study in the Bulgarian population. Acta Psychiatr Scand 2002; 105: 396–399.

    Article  CAS  PubMed  Google Scholar 

  12. Greenwood TA, Alexander M, Keck PE, McElroy S, Sadovnick AD, Remick RA et al. Evidence for linkage disequilibrium between the dopamine transporter and bipolar disorder. Am J Med Genet 2001; 105: 145–151.

    Article  CAS  PubMed  Google Scholar 

  13. Waldman ID, Robinson BF, Feigon SA . Linkage disequilibrium between the dopamine transporter gene (DAT1) and bipolar disorder: extending the transmission disequilibrium test (TDT) to examine genetic heterogeneity. Genet Epidemiol 1997; 14: 699–704.

    Article  CAS  PubMed  Google Scholar 

  14. Mill J, Asherson P, Browes C, D'Souza U, Craig I . Expression of the dopamine transporter gene is regulated by the 3′ UTR VNTR: evidence from brain and lymphocytes using quantitative RT-PCR. Am J Med Genet 2002; 114: 975–979.

    Article  PubMed  Google Scholar 

  15. Fuke S, Suo S, Takahashi N, Koike H, Sasagawa N, Ishiura S . The VNTR polymorphism of the human dopamine transporter (DAT1) gene affects gene expression. Pharmacogenomics J 2001; 1: 152–156.

    Article  CAS  PubMed  Google Scholar 

  16. Miller GM, Madras BK . Polymorphisms in the 3′-untranslated region of human and monkey dopamine transporter genes affect reporter gene expression. Mol Psychiatry 2002; 7: 44–55.

    Article  CAS  PubMed  Google Scholar 

  17. Mill J, Asherson P, Craig I, D'Souza UM . Transient expression analysis of allelic variants of a VNTR in the dopamine transporter gene (DAT1). BMC Genet 2005; 6: 3.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Sheehan DV, Lecrubier Y, Sheehan KH, Amorim P, Janavs J, Weiller E et al. The Mini-International Neuropsychiatric Interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J Clin Psychiatry 1998; 59 (Suppl 20): 22–33; quiz 34–57.

    PubMed  Google Scholar 

  19. Kaiser R, Hofer A, Grapengiesser A, Gasser T, Kupsch A, Roots I et al. Dopa-induced adverse effects in PD and dopamine transporter gene polymorphism. Neurology 2003; 60: 1750–1755.

    Article  CAS  PubMed  Google Scholar 

  20. Kaiser R, Muller-Oerlinghausen B, Filler D, Tremblay PB, Berghofer A, Roots I et al. Correlation between serotonin uptake in human blood platelets with the 44-bp polymorphism and the 17-bp variable number of tandem repeat of the serotonin transporter. Am J Med Genet 2002; 114: 323–328.

    Article  PubMed  Google Scholar 

  21. Licinio J, O'Kirwan F, Irizarry K, Merriman B, Thakur S, Jepson R et al. Association of a corticotropin-releasing hormone receptor 1 haplotype and antidepressant treatment response in Mexican-Americans. Mol Psychiatry 2004; 9: 1075–1082.

    Article  CAS  PubMed  Google Scholar 

  22. Bauer M, Whybrow PC, Angst J, Versiani M, Moller HJ . World Federation of Societies of Biological Psychiatry (WFSBP) Guidelines for Biological Treatment of Unipolar Depressive Disorders, Part 1: Acute and continuation treatment of major depressive disorder. World J Biol Psychiatry 2002; 3: 5–43.

    Article  PubMed  Google Scholar 

  23. Jonckheere A . A distribution-free k-sample test against ordered alternatives. Biometrika 1954; 41: 133–145.

    Article  Google Scholar 

  24. Bland JM, Altman DG . Statistics notes. The odds ratio. BMJ 2000; 320: 1468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Thase ME . Effectiveness of antidepressants: comparative remission rates. J Clin Psychiatry 2003; 64 (Suppl 2): 3–7.

    Article  CAS  PubMed  Google Scholar 

  26. Zhou FM, Liang Y, Salas R, Zhang L, De Biasi M, Dani JA . Corelease of dopamine and serotonin from striatal dopamine terminals. Neuron 2005; 46: 65–74.

    Article  CAS  PubMed  Google Scholar 

  27. Willner P, Hale AS, Argyropoulos S . Dopaminergic mechanism of antidepressant action in depressed patients. J Affect Disord 2005; 86: 37–45.

    Article  CAS  PubMed  Google Scholar 

  28. Wong ML, O'Kirwan F, Hannestad JP, Irizarry KJ, Elashoff D, Licinio J . St John's wort and imipramine-induced gene expression profiles identify cellular functions relevant to antidepressant action and novel pharmacogenetic candidates for the phenotype of antidepressant treatment response. Mol Psychiatry 2004; 9: 237–251.

    Article  CAS  PubMed  Google Scholar 

  29. Manji HK, Quiroz JA, Sporn J, Payne JL, Denicoff K, N G et al. Enhancing neuronal plasticity and cellular resilience to develop novel, improved therapeutics for difficult-to-treat depression. Biol Psychiatry 2003; 53: 707–742.

    Article  CAS  PubMed  Google Scholar 

  30. Nierenberg AA, Farabaugh AH, Alpert JE, Gordon J, Worthington JJ, Rosenbaum JF et al. Timing of onset of antidepressant response with fluoxetine treatment. Am J Psychiatry 2000; 157: 1423–1428.

    Article  CAS  PubMed  Google Scholar 

  31. Nierenberg AA, Quitkin FM, Kremer C, Keller MB, Thase ME . Placebo-controlled continuation treatment with mirtazapine: acute pattern of response predicts relapse. Neuropsychopharmacology 2004; 29: 1012–1018.

    Article  CAS  PubMed  Google Scholar 

  32. Szegedi A, Rujescu D, Tadic A, Muller MJ, Kohnen R, Stassen HH et al. The catechol-O-methyltransferase Val108/158Met polymorphism affects short-term treatment response to mirtazapine, but not to paroxetine in major depression. Pharmacogenomics J 2005; 5: 49–53.

    Article  CAS  PubMed  Google Scholar 

  33. Binder EB, Salyakina D, Lichtner P, Wochnik GM, Ising M, Putz B et al. Polymorphisms in FKBP5 are associated with increased recurrence of depressive episodes and rapid response to antidepressant treatment. Nat Genet 2004; 36: 1319–1325.

    Article  CAS  PubMed  Google Scholar 

  34. Kang AM, Palmatier MA, Kidd KK . Global variation of a 40-bp VNTR in the 3′-untranslated region of the dopamine transporter gene (SLC6A3). Biol Psychiatry 1999; 46: 151–160.

    Article  CAS  PubMed  Google Scholar 

  35. Manki H, Kanba S, Muramatsu T, Higuchi S, Suzuki E, Matsushita S et al. Dopamine D2, D3 and D4 receptor and transporter gene polymorphisms and mood disorders. J Affect Disord 1996; 40: 7–13.

    Article  CAS  PubMed  Google Scholar 

  36. Bocchetta A, Piccardi MP, Palmas MA, Chillotti C, Oi A, Del Zompo M . Family-based association study between bipolar disorder and DRD2, DRD4, DAT, and SERT in Sardinia. Am J Med Genet 1999; 88: 522–526.

    Article  CAS  PubMed  Google Scholar 

  37. Kirov G, Jones I, McCandless F, Craddock N, Owen MJ . Family-based association studies of bipolar disorder with candidate genes involved in dopamine neurotransmission: DBH, DAT1, COMT, DRD2, DRD3 and DRD5. Mol Psychiatry 1999; 4: 558–565.

    Article  CAS  PubMed  Google Scholar 

  38. Souery D, Lipp O, Mahieu B, Mendelbaum K, De Martelaer V, Van Broeckhoven C et al. Association study of bipolar disorder with candidate genes involved in catecholamine neurotransmission: DRD2, DRD3, DAT1, and TH genes. Am J Med Genet 1996; 67: 551–555.

    Article  CAS  PubMed  Google Scholar 

  39. Frisch A, Postilnick D, Rockah R, Michaelovsky E, Postilnick S, Birman E et al. Association of unipolar major depressive disorder with genes of the serotonergic and dopaminergic pathways. Mol Psychiatry 1999; 4: 389–392.

    Article  CAS  PubMed  Google Scholar 

  40. Kelsoe JR, Sadovnick AD, Kristbjarnarson H, Bergesch P, Mroczkowski-Parker Z, Drennan M et al. Possible locus for bipolar disorder near the dopamine transporter on chromosome 5. Am J Med Genet 1996; 67: 533–540.

    Article  CAS  PubMed  Google Scholar 

  41. Serretti A, Zanardi R, Cusin C, Rossini D, Lilli R, Lorenzi C et al. No association between dopamine D(2) and D(4) receptor gene variants and antidepressant activity of two selective serotonin reuptake inhibitors. Psychiatry Res 2001; 104: 195–203.

    Article  CAS  PubMed  Google Scholar 

  42. Murphy DL, Lerner A, Rudnick G, Lesch KP . Serotonin transporter: gene, genetic disorders, and pharmacogenetics. Mol Interv 2004; 4: 109–123.

    Article  CAS  PubMed  Google Scholar 

  43. Serretti A, Lilli R, Lorenzi C, Lattuada E, Cusin C, Smeraldi E . Serotonin transporter gene (5-HTTLPR) and major psychoses. Mol Psychiatry 2002; 7: 95–99.

    Article  CAS  PubMed  Google Scholar 

  44. Vormfelde SV, Hoell I, Tzvetkov M, Jamrozinski K, Sehrt D, Brockmoller J et al. Anxiety- and novelty seeking-related personality traits and serotonin transporter gene polymorphisms. J Psychiatr Res 2005 (E-pub ahead of print).

  45. Kunugi H, Hattori M, Kato T, Tatsumi M, Sakai T, Sasaki T et al. Serotonin transporter gene polymorphisms: ethnic difference and possible association with bipolar affective disorder. Mol Psychiatry 1997; 2: 457–462.

    Article  CAS  PubMed  Google Scholar 

  46. Yoshida K, Takahashi H, Higuchi H, Kamata M, Ito K, Sato K et al. Prediction of antidepressant response to milnacipran by norepinephrine transporter gene polymorphisms. Am J Psychiatry 2004; 161: 1575–1580.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Drs Hildebrand and Zander for their contributions to the clinical characterization of patients and we thank Dr Gabriele Laschinski for thorough revision of the manuscript. This study was supported by the German Ministry of Education and Research, BMBF Grant No. 01 GG 9845/5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Kirchheiner.

Additional information

Duality of Interest

None of the authors had any financial interest, direct or indirect (dual commitment), that might affect the conduct or reporting of the work they have submitted.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirchheiner, J., Nickchen, K., Sasse, J. et al. A 40-basepair VNTR polymorphism in the dopamine transporter (DAT1) gene and the rapid response to antidepressant treatment. Pharmacogenomics J 7, 48–55 (2007). https://doi.org/10.1038/sj.tpj.6500398

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.tpj.6500398

Keywords

This article is cited by

Search

Quick links