Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Haloperidol induces apoptosis via the σ2 receptor system and Bcl-XS

Abstract

Toxicity of the typical antipsychotic haloperidol (HAL) comprises an apoptotic component that we link to pro-apoptotic Bcl-XS in PC12 preneuronal and N2a neuroblastoma cells. The mitochondrial translocation of Bcl-XS and its interaction with the pore-forming voltage-dependent anion channel (VDAC) correlates with the redistribution of cytochrome c and the cleavage of Poly(ADP-ribose) polymerase. Haloperidol-induced apoptosis is mediated by the sigma2 (σ2) receptor system and does not involve the expected antagonism of the dopamine D2 receptor, nor is it influenced by Vitamin E- or p53/Bax-mediated events. Pathological relevance is demonstrated by the cytotoxic synergism between HAL and the Alzheimer disease-related peptide β-amyloid(1–40), which correlates with Bcl-XS expression and its interaction with VDAC, and with cytosolic cytochrome c translocation. These data provide for a unique apoptotic mechanism that could underscore the clinical risks associated with HAL, particularly following chronic regimens or in the elderly.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

HAL:

haloperidol

DTG:

1,3-di-o-tolylguanidine

SKF:

SKF 10,047 [(+)N-allyl-normetazocine]

PARP:

poly(ADP-ribose) polymerase

VDAC:

voltage-dependent anion channel

Aβ40:

β-amyloid(1–40)

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium

References

  1. Wyatt RJ, Damiani LM, Henter ID . First-episode schizophrenia. Early intervention and medication discontinuation in the context of course and treatment. Br J Psychiatry 1998; 172: 77–83.

    Article  CAS  Google Scholar 

  2. Lieberman JA, Tollefson GD, Charles C, Zipursky R, Sharma T, Kahn RS et al. Antipsychotic drug effects on brain morphology in first-episode psychosis. Arch Gen Psychiatry 2005; 62: 361–370.

    Article  CAS  Google Scholar 

  3. Dewey KJ, Fibiger HC . The effects of dose and duration of chronic pimozide administration on dopamine receptor supersensitivity. Naunyn Schmiedebergs Arch Pharmacol 1983; 322: 261–270.

    Article  CAS  Google Scholar 

  4. Galili-Mosberg R, Gil-Ad I, Weizman A, Melamed E, Offen D . Haloperidol-induced neurotoxicity – possible implications for tardive dyskinesia. J Neural Transm 2000; 107: 479–490.

    Article  CAS  Google Scholar 

  5. Bowen WD . σ-Receptors: recent advances and new clinical potentials. Pharm Acta Helv 2000; 74: 211–218.

    Article  CAS  Google Scholar 

  6. Quirion R, Bowen WD, Itzhak Y, Junien JL, Musacchio JM, Rothman RB et al. A proposal for the classification of σ binding sites. Trends Pharmacol Sci 1992; 13: 85–86.

    Article  CAS  Google Scholar 

  7. Hayashi T, Su TP . σ-1 receptor ligands: potential in the treatment of neuropsychiatric disorders. CNS Drugs 2004; 18: 269–284.

    Article  CAS  Google Scholar 

  8. Su TP, London ED, Jaffe JH . Steroid binding at sigma receptors suggests a link between endocrine, nervous, and immune systems. Science 1988; 240: 219–221.

    Article  CAS  Google Scholar 

  9. Boyer EW . Dextromethorphan abuse. Pediatr Emerg Care 2004; 20: 858–863.

    Article  Google Scholar 

  10. Gil-Ad I, Shtaif B, Shiloh R, Weizman A . Evaluation of the neurotoxic activity of typical and atypical neuroleptics: relevance to iatrogenic extrapyramidal symptoms. Cell Mol Neurobiol 2001; 21: 705–716.

    Article  CAS  Google Scholar 

  11. Crawford KW, Bowen WD . σ-2 receptor agonists activate a novel apoptotic pathway and potentiate antineoplastic drugs in breast tumor cell lines. Cancer Res 2002; 62: 313–322.

    CAS  PubMed  Google Scholar 

  12. Vilner BJ, Bowen WD . Modulation of cellular calcium by σ-2 receptors: release from intracellular stores in human SK-N-SH neuroblastoma cells. J Pharmacol Exp Ther 2000; 292: 900–911.

    CAS  PubMed  Google Scholar 

  13. Chan SL, Yu VC . Proteins of the bcl-2 family in apoptosis signalling: from mechanistic insights to therapeutic opportunities. Clin Exp Pharmacol Physiol 2004; 31: 119–128.

    Article  CAS  Google Scholar 

  14. Lindenboim L, Yuan J, Stein R . Bcl-xS and Bax induce different apoptotic pathways in PC12 cells. Oncogene 2000; 19: 1783–1793.

    Article  CAS  Google Scholar 

  15. Lindenboim L, Schlipf S, Kaufmann T, Borner C, Stein R . Bcl-x(S) induces an NGF-inhibitable cytochrome c release. Exp Cell Res 2004; 297: 392–403.

    Article  CAS  Google Scholar 

  16. Wei Z, Mousseau DD, Richardson JS, Dyck LE, Li XM . Atypical antipsychotics attenuate neurotoxicity of β-amyloid (25–35) by modulating Bax and Bcl-X(L/S) expression and localization. J Neurosci Res 2003; 74: 942–947.

    Article  CAS  Google Scholar 

  17. Post A, Holsboer F, Behl C . Induction of NF-κB activity during haloperidol-induced oxidative toxicity in clonal hippocampal cells: suppression of NF-κB and neuroprotection by antioxidants. J Neurosci 1998; 18: 8236–8246.

    Article  CAS  Google Scholar 

  18. Post A, Rucker M, Ohl F, Uhr M, Holsboer F, Almeida OF et al. Mechanisms underlying the protective potential of α-tocopherol (vitamin E) against haloperidol-associated neurotoxicity. Neuropsychopharmacology 2002; 26: 397–407.

    Article  CAS  Google Scholar 

  19. Martinou JC, Green DR . Breaking the mitochondrial barrier. Nat Rev Mol Cell Biol 2001; 2: 63–67.

    Article  CAS  Google Scholar 

  20. Musacchio JM, Klein M, Paturzo JJ . Effects of dextromethorphan site ligands and allosteric modifiers on the binding of (+)-[3H]3-(-3-hydroxyphenyl)-N-(1-propyl)piperidine. Mol Pharmacol 1989; 35: 1–5.

    CAS  PubMed  Google Scholar 

  21. Walker JM, Bowen WD, Walker FO, Matsumoto RR, De Costa B, Rice KC . Sigma receptors: biology and function. Pharmacol Rev 1990; 42: 355–402.

    CAS  PubMed  Google Scholar 

  22. Hellewell SB, Bowen WD . A sigma-like binding site in rat pheochromocytoma (PC12) cells: decreased affinity for (+)-benzomorphans and lower molecular weight suggest a different sigma receptor form from that of guinea pig brain. Brain Res 1990; 527: 244–253.

    Article  CAS  Google Scholar 

  23. Gilmore DL, Liu Y, Matsumoto RR . Review of the pharmacological and clinical profile of rimcazole. CNS Drug Rev 2004; 10: 1–22.

    Article  CAS  Google Scholar 

  24. Devanand DP, Marder K, Michaels KS, Sackeim HA, Bell K, Sullivan MA et al. A randomized, placebo-controlled dose-comparison trial of haloperidol for psychosis and disruptive behaviors in Alzheimer's disease. Am J Psychiatry 1998; 155: 1512–1520.

    Article  CAS  Google Scholar 

  25. Mousseau DD, Chapelsky S, De Crescenzo G, Kirkitadze MD, Magoon J, Inoue S et al. A direct interaction between transforming growth factor (TGF)-βs and amyloid-β protein affects fibrillogenesis in a TGF-β receptor-independent manner. J Biol Chem 2003; 278: 38715–38722.

    Article  CAS  Google Scholar 

  26. Waddington JL, Kapur S, Remington GJ . The neuroscience and clinical psychopharmacology of first- and second-generation antipsychotic drugs. In: Hirsch SR, Weinberger DR (eds). Schizophrenia, 2nd edn. Blackwell Science: Oxford, 2003, pp 421–441.

    Google Scholar 

  27. Hanner M, Moebius FF, Flandorfer A, Knaus HG, Striessnig J, Kempner E et al. Purification, molecular cloning, and expression of the mammalian σ1-binding site. Proc Natl Acad Sci USA 1996; 93: 8072–8077.

    Article  CAS  Google Scholar 

  28. Korpi ER, Kleinman JE, Costakos DT, Linnoila M, Wyatt RJ . Reduced haloperidol in the post-mortem brains of haloperidol-treated patients. Psychiatry Res 1984; 11: 259–269.

    Article  CAS  Google Scholar 

  29. Vilner BJ, de Costa BR, Bowen WD . Cytotoxic effects of σ ligands: σ receptor-mediated alterations in cellular morphology and viability. J Neurosci 1995; 15: 117–134.

    Article  CAS  Google Scholar 

  30. Brent PJ, Pang G, Little G, Dosen PJ, Van Helden DF . The sigma receptor ligand, reduced haloperidol, induces apoptosis and increases intracellular-free calcium levels [Ca2+]i in colon and mammary adenocarcinoma cells. Biochem Biophys Res Commun 1996; 219: 219–226.

    Article  CAS  Google Scholar 

  31. Braun T, Dar S, Vorobiov D, Lindenboim L, Dascal N, Stein R . Expression of Bcl-x(S) in Xenopus oocytes induces BH3-dependent and caspase-dependent cytochrome c release and apoptosis. Mol Cancer Res 2003; 1: 186–194.

    CAS  PubMed  Google Scholar 

  32. Yu SW, Wang H, Poitras MF, Coombs C, Bowers WJ, Federoff HJ et al. Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science 2002; 297: 259–263.

    Article  CAS  Google Scholar 

  33. Vander Heiden MG, Thompson CB . Bcl-2 proteins: regulators of apoptosis or of mitochondrial homeostasis? Nat Cell Biol 1999; 1: E209–E216.

    Article  CAS  Google Scholar 

  34. Martinou JC, Desagher S, Antonsson B . Cytochrome c release from mitochondria: all or nothing. Nat Cell Biol 2000; 2: E41–E43.

    Article  CAS  Google Scholar 

  35. Kuwana T, Mackey MR, Perkins G, Ellisman MH, Latterich M, Schneiter R et al. Bid, Bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell 2002; 111: 331–342.

    Article  CAS  Google Scholar 

  36. Mitra RS, Benedict MA, Qian D, Foreman KE, Ekhterae D, Nickoloff BJ et al. Killing of sarcoma cells by proapoptotic Bcl-X(S): role of the BH3 domain and regulation by Bcl-X(L). Neoplasia 2001; 3: 437–445.

    Article  CAS  Google Scholar 

  37. Lezoualc’h F, Rupprecht R, Holsboer F, Behl C . Bcl-2 prevents hippocampal cell death induced by the neuroleptic drug haloperidol. Brain Res 1996; 738: 176–179.

    Article  Google Scholar 

  38. Brent PJ, Pang GT . σ binding site ligands inhibit cell proliferation in mammary and colon carcinoma cell lines and melanoma cells in culture. Eur J Pharmacol 1995; 278: 151–160.

    Article  CAS  Google Scholar 

  39. Bermack JE, Debonnel G . Distinct modulatory roles of sigma receptor subtypes on glutamatergic responses in the dorsal hippocampus. Synapse 2005; 55: 37–44.

    Article  CAS  Google Scholar 

  40. Gross A, Jockel J, Wei MC, Korsmeyer SJ . Enforced dimerization of BAX results in its translocation, mitochondrial dysfunction and apoptosis. EMBO J 1998; 17: 3878–3885.

    Article  CAS  Google Scholar 

  41. Hinz M, Loser P, Mathas S, Krappmann D, Dorken B, Scheidereit C . Constitutive NF-κB maintains high expression of a characteristic gene network, including CD40, CD86, and a set of antiapoptotic genes in Hodgkin/Reed–Sternberg cells. Blood 2001; 97: 2798–2807.

    Article  CAS  Google Scholar 

  42. Kawamura K, Kimura Y, Tsukada H, Kobayashi T, Nishiyama S, Kakiuchi T et al. An increase of σ receptors in the aged monkey brain. Neurobiol Aging 2003; 24: 745–752.

    Article  CAS  Google Scholar 

  43. Reddy DS, Kaur G, Kulkarni SK . Sigma (σ1) receptor mediated anti-depressant-like effects of neurosteroids in the Porsolt forced swim test. NeuroReport 1998; 9: 3069–3073.

    Article  CAS  Google Scholar 

  44. Beuzen JN, Taylor N, Wesnes K, Wood A . A comparison of the effects of olanzapine, haloperidol and placebo on cognitive and psychomotor functions in healthy elderly volunteers. J Psychopharmacol 1999; 13: 152–158.

    Article  CAS  Google Scholar 

  45. Gil-Ad I, Shtaif B, Levkovitz Y, Dayag M, Zeldich E, Weizman A . Characterization of phenothiazine-induced apoptosis in neuroblastoma and glioma cell lines: clinical relevance and possible application for brain-derived tumors. J Mol Neurosci 2004; 22: 189–198.

    Article  CAS  Google Scholar 

  46. Phan VL, Urani A, Sandillon F, Privat A, Maurice T . Preserved sigma1 (σ1) receptor expression and behavioral efficacy in the aged C57BL/6 mouse. Neurobiol Aging 2003; 24: 865–881.

    Article  CAS  Google Scholar 

  47. Urani A, Romieu P, Roman FJ, Yamada K, Noda Y, Kamei H et al. Enhanced antidepressant efficacy of σ1 receptor agonists in rats after chronic intracerebroventricular infusion of β-amyloid-(1–40) protein. Eur J Pharmacol 2004; 486: 151–161.

    Article  CAS  Google Scholar 

  48. Yao A, Nguyen TV, Pike CJ . β-Amyloid-induced neuronal apoptosis involves c-Jun N-terminal kinase-dependent downregulation of Bcl-w. J Neurosci 2005; 25: 1149–1158.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Rémi Quirion, Douglas Hospital Research Center, Montréal (Québec), and Dr Deborah Anderson, Saskatchewan Cancer Agency, for comments on the manuscript. This work was supported by the Saskatchewan Health Research Foundation (to DDM), by the Canadian Institutes of Health Research (CIHR; to XML) and by a post-doctoral Fellowship (to ZW) from the CIHR/Rx&D Research Program (200104DFE-91579-112515) and AstraZeneca/Alzheimer Society of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D D Mousseau.

Additional information

Duality of interest

None declared.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, Z., Mousseau, D., Dai, Y. et al. Haloperidol induces apoptosis via the σ2 receptor system and Bcl-XS. Pharmacogenomics J 6, 279–288 (2006). https://doi.org/10.1038/sj.tpj.6500373

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.tpj.6500373

Keywords

This article is cited by

Search

Quick links