Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Distinct proteomic profiles of amphetamine self-administration transitional states

Abstract

In the rat, continuous access to d-amphetamine (d-AMPH) leads to lengthy bouts of self-administration, voluntary abstinence, and relapse to self-administration. Previous studies have revealed that the progression from psychostimulant self-administration to abstinence to relapse is mediated in part by the ventral hippocampus. Stimulation of the ventral subiculum (vSub) during voluntary abstinence from d-AMPH self-administration reinstates self-administration and increases nucleus accumbens (NAc) dopamine efflux. Quantitative proteomic examination of the hippocampus from rats naïve to amphetamine, during a self-administration session ‘Binge’, during voluntarily abstinence ‘Abstinent’, and after reinstatement of self-administration ‘Relapse’, revealed a differential proteomic state during abstinence. Actin- and cytoskeletal-related proteins were over-represented in the changes occurring during abstinence and suggest a decrease in actin filament polymerization. These changes may underlie alterations in neuronal tone during abstinence that could affect both neurotransmission and behavior. These data provide the first classification of addiction-related behaviors based on clustering of quantitative proteomic measurements.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Abbreviations

d-AMPH:

d-amphetamine

DA:

dopamine

NAc:

nucleus accumbens

IVSA:

intravenous self-administration

vSub:

ventral subiculum

2-DIGE:

two-dimensional difference gel electrophoresis

MALDI-ToF/ToF:

matrix-assisted laser desorption ionization time-of-flight-time-of-flight tandem mass spectrometry

PCA:

Principal Component Analysis

References

  1. Roberts DC, Corcoran ME, Fibiger HC . On the role of ascending catecholaminergic systems in intravenous self-administration of cocaine. Pharmacol Biochem Behav 1977; 6: 615–620.

    Article  CAS  Google Scholar 

  2. Di Ciano P, Blaha CD, Phillips AG . Changes in dopamine oxidation currents in the nucleus accumbens during unlimited-access self-administration of d-amphetamine by rats. Behav Pharmacol 1996; 7: 714–729.

    Article  CAS  Google Scholar 

  3. Gawin FH, Kleber HD . Abstinence symptomatology and psychiatric diagnosis in cocaine abusers. Clinical observations. Arch Gen Psychiatry 1986; 43: 107–113.

    Article  CAS  Google Scholar 

  4. Di Ciano P, Blaha CD, Phillips AG . Inhibition of dopamine efflux in the rat nucleus accumbens during abstinence after free access to d-amphetamine. Behav Brain Res 2002; 128: 1–12.

    Article  CAS  Google Scholar 

  5. Hemby SE, Co C, Koves TR, Smith JE, Dworkin SI . Differences in extracellular dopamine concentrations in the nucleus accumbens during response-dependent and response-independent cocaine administration in the rat. Psychopharmacology (Berl) 1997; 133: 7–16.

    Article  CAS  Google Scholar 

  6. Groenewegen HJ, Vermeulen-Van der Zee E, te Kortschot A, Witter MP . Organization of the projections from the subiculum to the ventral striatum in the rat. A study using anterograde transport of Phaseolus vulgaris leucoagglutinin. Neuroscience 1987; 23: 103–120.

    Article  CAS  Google Scholar 

  7. Legault M, Rompre PP, Wise RA . Chemical stimulation of the ventral hippocampus elevates nucleus accumbens dopamine by activating dopaminergic neurons of the ventral tegmental area. J Neurosci 2000; 20: 1635–1642.

    Article  CAS  Google Scholar 

  8. Taepavarapruk P, Phillips AG . Neurochemical correlates of relapse to d-amphetamine self-administration by rats induced by stimulation of the ventral subiculum. Psychopharmacology (Berl) 2003; 168: 99–108.

    Article  CAS  Google Scholar 

  9. Taepavarapruk P, Floresco SB, Phillips AG . Hyperlocomotion and increased dopamine efflux in the rat nucleus accumbens evoked by electrical stimulation of the ventral subiculum: role of ionotropic glutamate and dopamine D1 receptors. Psychopharmacology (Berl) 2000; 151: 242–251.

    Article  CAS  Google Scholar 

  10. Vorel SR, Liu X, Hayes RJ, Spector JA, Gardner EL . Relapse to cocaine-seeking after hippocampal theta burst stimulation. Science 2001; 292: 1175–1178.

    Article  CAS  Google Scholar 

  11. Sun W, Rebec GV . Lidocaine inactivation of ventral subiculum attenuates cocaine-seeking behavior in rats. J Neurosci 2003; 23: 10258–10264.

    Article  CAS  Google Scholar 

  12. Nestler EJ . Psychogenomics: opportunities for understanding addiction. J Neurosci 2001; 21: 8324–8327.

    Article  CAS  Google Scholar 

  13. Freeman WM, Dougherty KE, Vacca SE, Vrana KE . An interactive database of cocaine-responsive gene expression. Sci World J 2002; 2: 701–706.

    Article  Google Scholar 

  14. Freeman WM, Hemby SE . Proteomics for protein expression profiling in neuroscience. Neurochem Res 2004; 29: 1065–1081.

    Article  CAS  Google Scholar 

  15. Unlu M, Morgan ME, Minden JS . Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 1997; 18: 2071–2077.

    Article  CAS  Google Scholar 

  16. Alban A, David SO, Bjorkesten L, Andersson C, Sloge E, Lewis S et al. A novel experimental design for comparative two-dimensional gel analysis: two-dimensional difference gel electrophoresis incorporating a pooled internal standard. Proteomics 2003; 3: 36–44.

    Article  CAS  Google Scholar 

  17. Di Ciano P, Coury A, Depoortere RY, Egilmez Y, Lane JD, Emmett-Oglesby MW et al. Comparison of changes in extracellular dopamine concentrations in the nucleus accumbens during intravenous self-administration of cocaine or d-amphetamine. Behav Pharmacol 1995; 6: 311–322.

    Article  CAS  Google Scholar 

  18. Freeman WM, Brebner K, Lynch WJ, Robertson DJ, Roberts DC, Vrana KE . Cocaine-responsive gene expression changes in rat hippocampus. Neuroscience 2001; 108: 371–380.

    Article  CAS  Google Scholar 

  19. Freeman WM, Nader MA, Nader SH, Robertson DJ, Gioia L, Mitchell SM et al. Chronic cocaine-mediated changes in non-human primate nucleus accumbens gene expression. J Neurochem 2001; 77: 542–549.

    Article  CAS  Google Scholar 

  20. Medzihradszky KF, Campbell JM, Baldwin MA, Falick AM, Juhasz P, Vestal ML et al. The characteristics of peptide collision-induced dissociation using a high-performance MALDI-TOF/TOF tandem mass spectrometer. Anal Chem 2000; 72: 552–558.

    Article  CAS  Google Scholar 

  21. Thomas PD, Campbell MJ, Kejariwal A, Mi H, Karlak B, Daverman R et al. PANTHER: a library of protein families and subfamilies indexed by function. Genome Res 2003; 13: 2129–2141.

    Article  CAS  Google Scholar 

  22. Thomas PD, Kejariwal A, Campbell MJ, Mi H, Diemer K, Guo N et al. PANTHER: a browsable database of gene products organized by biological function, using curated protein family and subfamily classification. Nucleic Acids Res 2003; 31: 334–341.

    Article  CAS  Google Scholar 

  23. Raychaudhuri S, Stuart JM, Altman RB . Principal components analysis to summarize microarray experiments: application to sporulation time series. Pac Symp Biocomput 2000; 5: 455–466.

    Google Scholar 

  24. Misra J, Schmitt W, Hwang D, Hsiao LL, Gullans S, Stephanopoulos G et al. Interactive exploration of microarray gene expression patterns in a reduced dimensional space. Genome Res 2002; 12: 1112–1120.

    Article  CAS  Google Scholar 

  25. Cho RJ, Campbell MJ . Transcription, genomes, function. Trends Genet 2000; 16: 409–415.

    Article  CAS  Google Scholar 

  26. Blaha CD, Yang CR, Floresco SB, Barr AM, Phillips AG . Stimulation of the ventral subiculum of the hippocampus evokes glutamate receptor-mediated changes in dopamine efflux in the rat nucleus accumbens. Eur J Neurosci 1997; 9: 902–911.

    Article  CAS  Google Scholar 

  27. Black YD, Green-Jordan K, Eichenbaum HB, Kantak KM . Hippocampal memory system function and the regulation of cocaine self-administration behavior in rats. Behav Brain Res 2004; 151: 225–238.

    Article  CAS  Google Scholar 

  28. Yamashita A, Maeda K, Maeda Y . Crystal structure of CapZ: structural basis for actin filament barbed end capping. EMBO J 2003; 22: 1529–1538.

    Article  CAS  Google Scholar 

  29. Pantaloni D, Le Clainche C, Carlier MF . Mechanism of actin-based motility. Science 2001; 292: 1502–1506.

    Article  CAS  Google Scholar 

  30. Welch MD, Iwamatsu A, Mitchison TJ . Actin polymerization is induced by Arp2/3 protein complex at the surface of Listeria monocytogenes. Nature 1997; 385: 265–269.

    Article  CAS  Google Scholar 

  31. Goode BL, Wong JJ, Butty AC, Peter M, McCormack AL, Yates JR et al. Coronin promotes the rapid assembly and cross-linking of actin filaments and may link the actin and microtubule cytoskeletons in yeast. J Cell Biol 1999; 144: 83–98.

    Article  CAS  Google Scholar 

  32. Huang H, Rao Y, Sun P, Gong LW . Involvement of actin cytoskeleton in modulation of Ca(2+)-activated K(+) channels from rat hippocampal CA1 pyramidal neurons. Neurosci Lett 2002; 332: 141–145.

    Article  CAS  Google Scholar 

  33. Berdiev BK, Prat AG, Cantiello HF, Ausiello DA, Fuller CM, Jovov B et al. Regulation of epithelial sodium channels by short actin filaments. J Biol Chem 1996; 271: 17704–17710.

    Article  CAS  Google Scholar 

  34. Zhou Q, Xiao M, Nicoll RA . Contribution of cytoskeleton to the internalization of AMPA receptors. Proc Natl Acad Sci USA 2001; 98: 1261–1266.

    Article  CAS  Google Scholar 

  35. Furukawa K, Fu W, Li Y, Witke W, Kwiatkowski DJ, Mattson MP . The actin-severing protein gelsolin modulates calcium channel and NMDA receptor activities and vulnerability to excitotoxicity in hippocampal neurons. J Neurosci 1997; 17: 8178–8186.

    Article  CAS  Google Scholar 

  36. Fukazawa Y, Saitoh Y, Ozawa F, Ohta Y, Mizuno K, Inokuchi K . Hippocampal LTP is accompanied by enhanced F-actin content within the dendritic spine that is essential for late LTP maintenance in vivo. Neuron 2003; 38: 447–460.

    Article  CAS  Google Scholar 

  37. Chen Y, Bourne J, Pieribone VA, Fitzsimonds RM . The role of actin in the regulation of dendritic spine morphology and bidirectional synaptic plasticity. NeuroReport 2004; 15: 829–832.

    Article  Google Scholar 

  38. Ackermann M, Matus A . Activity-induced targeting of profilin and stabilization of dendritic spine morphology. Nat Neurosci 2003; 6: 1194–1200.

    Article  CAS  Google Scholar 

  39. Star EN, Kwiatkowski DJ, Murthy VN . Rapid turnover of actin in dendritic spines and its regulation by activity. Nat Neurosci 2002; 5: 239–246.

    Article  CAS  Google Scholar 

  40. Chatterton JE, Awobuluyi M, Premkumar LS, Takahashi H, Talantova M, Shin Y et al. Excitatory glycine receptors containing the NR3 family of NMDA receptor subunits. Nature 2002; 415: 793–798.

    Article  CAS  Google Scholar 

  41. Wong HK, Liu XB, Matos MF, Chan SF, Perez-Otano I, Boysen M et al. Temporal and regional expression of NMDA receptor subunit NR3A in the mammalian brain. J Comp Neurol 2002; 450: 303–317.

    Article  CAS  Google Scholar 

  42. Najlerahim A, Harrison PJ, Barton AJ, Heffernan J, Pearson RC . Distribution of messenger RNAs encoding the enzymes glutaminase, aspartate aminotransferase and glutamic acid decarboxylase in rat brain. Brain Res Mol Brain Res 1990; 7: 317–333.

    Article  CAS  Google Scholar 

  43. Kyte J, Doolittle RF . A simple method for displaying the hydropathic character of a protein. J Mol Biol 1982; 157: 105–132.

    Article  CAS  Google Scholar 

  44. Wildgruber R, Harder A, Obermaier C, Boguth G, Weiss W, Fey SJ et al. Towards higher resolution: two-dimensional electrophoresis of Saccharomyces cerevisiae proteins using overlapping narrow immobilized pH gradients. Electrophoresis 2000; 21: 2610–2616.

    Article  CAS  Google Scholar 

  45. Santoni V, Molloy M, Rabilloud T . Membrane proteins and proteomics: un amour impossible? Electrophoresis 2000; 21: 1054–1070.

    Article  CAS  Google Scholar 

  46. Schmidt F, Donahoe S, Hagens K, Mattow J, Schaible UE, Kaufmann SH et al. Complementary analysis of the Mycobacterium tuberculosis proteome by two-dimensional electrophoresis and isotope-coded affinity tag technology. Mol Cell Proteomics 2004; 3: 24–42.

    Article  CAS  Google Scholar 

  47. Shaw J, Rowlinson R, Nickson J, Stone T, Sweet A, Williams K et al. Evaluation of saturation labeling two-dimensional difference gel electrophoresis fluorescent dyes. Proteomics 2003; 3: 1181–1195.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH Grants DA015945 (to WMF), DA013830-03S1 (to SGA), and CIHR Grant FRN:36372 (to AGP). NIH Grant DA013772 to Scott E Hemby (Wake Forest University School of Medicine) provided generous financial support and scientific infrastructure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W M Freeman.

Additional information

DUALITY OF INTEREST

None declared.

Supplementary Information

Supplementary Information accompanies the paper on the The Pharmacogenomics Journal website (http://www.nature.com/tpj).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freeman, W., Brebner, K., Amara, S. et al. Distinct proteomic profiles of amphetamine self-administration transitional states. Pharmacogenomics J 5, 203–214 (2005). https://doi.org/10.1038/sj.tpj.6500309

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.tpj.6500309

Keywords

This article is cited by

Search

Quick links