Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Recovery of hippocampal cell proliferation and BDNF levels, both of which are reduced by repeated restraint stress, is accelerated by chronic venlafaxine

ABSTRACT

The present study investigated the poststress (PS) cellular and molecular changes in the hippocampus of rats subjected to repeated restraint stress (RS) and the effects of chronic administration of an antidepressant drug, venlafaxine, on these changes. It was found that RS suppressed hippocampal cell proliferation, decreased brain-derived neurotrophic factor (BDNF) levels, and increased both the levels of copper/zinc superoxide dismutase (Cu/Zn-SOD) and the number of Cu/Zn-SOD immunostained hippocampal interneurons. In venlafaxine-treated rats, the changes in cell proliferation, BDNF levels, and the number of Cu/Zn-SOD interneurons returned to control levels on PS Days 21, 14, 7, respectively. In vehicle-injected rats, BDNF and the number of Cu/Zn-SOD interneurons returned to control levels on PS Days 21 and 14, respectively, but cell proliferation was still suppressed on PS Day 21. The stress-induced elevation of Cu/Zn-SOD protein remained during the 3-week PS period, and it was further increased by about 20% after 3 weeks of venlafaxine administration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Gurvits TV, Shenton ME, Hokama H, Ohta H, Lasko NB, Gilbertson MW et al. Magnetic resonance imaging study of hippocampal volume in chronic, combat-related posttraumatic stress disorder. Biol Psychiatry 1996; 40: 1091–1099.

    Article  CAS  Google Scholar 

  2. Sheline YI, Wang PW, Gado MH, Csernansky JG . Hippocampal atrophy in recurrent major depression. Proc Natl Acad Sci USA 1996; 93: 3908–3913.

    Article  CAS  Google Scholar 

  3. Shah PJ, Ebmeier KP, Glabus MF, Goodwin GM . Cortical gray matter reductions associated with treatment-resistant chronic unipolar depression. Controlled magnetic resonance imaging study. Br J Psychiatry 1998; 172: 527–532.

    Article  CAS  Google Scholar 

  4. Uno H, Tarara R, Else JG, Suleman MA, Sapolsky RM . Hippocampal damage associated with prolonged fatal stress in primates. J Neurosci 1989; 9: 1705–1711.

    Article  CAS  Google Scholar 

  5. Watanabe Y, Gould E, McEwen BS . Stress induces atrophy of apical dendrites of hippocampal CA3 pyramidal neurons. Brain Res 1992; 588: 341–345.

    Article  CAS  Google Scholar 

  6. Magariños AM, McEwen BS . Stress-induced atrophy of apical dendrites of hippocampal CA3C neurons: involvement of glucocorticoid secretion and excitatory amino acid receptors. Neuroscience 1995; 69: 89–98.

    Article  Google Scholar 

  7. Magariños AM, Verdugo JMG, McEwen BS . Chronic stress alters synaptic terminal structure in hippocampus. Proc Natl Acad Sci USA 1997; 94: 14002–14008.

    Article  Google Scholar 

  8. Gould E, McEwen BS, Tanapat P, Galea LAM, Fuchs E . Neurogenesis in the dentate gyrus of the adult tree shrew is regulated by psychosocial stress and NMDA receptor activation. J Neurosci 1997; 17: 2492–2498.

    Article  CAS  Google Scholar 

  9. Tanapat P, Hastings NB, Rydel TA, Galea LA, Gould E . Exposure to fox odor inhibits cell proliferation in the hippocampus of adult rats via an adrenal hormone-dependent mechanism. J Comp Neurol 2001; 437: 496–504.

    Article  CAS  Google Scholar 

  10. Nibuya M, Morinobu S, Duman RS . Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J Neurosci 1995; 15: 7539–7547.

    Article  CAS  Google Scholar 

  11. Russo-Neustadt A, Beard RC, Cotman CW . Exercise, antidepressant medications, and enhanced brain-derived neurotrophic factor expression. Neuropsychopharmacology 1999; 21: 679–682.

    Article  CAS  Google Scholar 

  12. Xu H, Richardson JS, Li XM . Dose-related effects of chronic antidepressants on neuroprotective proteins BDNF, Bcl-2 and Cu/Zn-SOD in rat hippocampus. Neuropsychopharmacology 2003; 28: 53–62.

    Article  CAS  Google Scholar 

  13. Malberg JE, Eisch AJ, Nestler EJ, Duman RS . Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci 2000; 20: 9104–9110.

    Article  CAS  Google Scholar 

  14. Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S . Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 2003; 301: 805–809.

    Article  CAS  Google Scholar 

  15. Russo-Neustadt A, Ha T, Ramirez R, Kesslak JP . Physical activity-antidepressant treatment combination: impact on brain-derived neurotrophic factor and behavior in an animal model. Behav Brain Res 2001; 120: 87–95.

    Article  CAS  Google Scholar 

  16. Lee J, Duan W, Long JM, Ingram DK, Mattson MP . Dietary restriction increases the number of newly generated neural cells, and induces BDNF expression, in the dentate gyrus of rats. J Mol Neurosci 2000; 15: 99–108.

    Article  CAS  Google Scholar 

  17. Russo-Neustadt A . Brain-derived neurotrophic factor, behavior, and new directions for the treatment of mental disorders. Semi Clin Neuropsychiatry 2003; 8: 109–118.

    Article  Google Scholar 

  18. Grillo CA, Piroli GG, Rosell DR, Hoskin EK, McEwen BS, Reagan LP . Region specific increases in oxidative stress and superoxide dismutase in the hippocampus of diabetic rats subjected to stress. Neuroscience 2003; 121: 133–140.

    Article  CAS  Google Scholar 

  19. Li XM, Chlan-Fourney J, Juorio AV, Bennett VL, Shrikhande S, Bowen RC . Antidepressants upregulate messenger RNA levels of the neuroprotective enzyme superoxide dismutase (SOD1). J Psychiatry Neurosci 2000; 25: 43–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Xu H, Qing H, Lu W, Keegan D, Richardson JS, Chlan-Fourney J et al. Quetiapine attenuates the immobilization stress-induced decrease of brain-derived neurotrophic factor expression in rat hippocampus. Neurosci Lett 2002; 321: 65–68.

    Article  CAS  Google Scholar 

  21. Smith MA, Makino S, Kvetnansky R, Post RM . Stress and glucocorticoids affect the expression of brain-derived neurotrophic factor and neurotrophin-3 mRNAs in the hippocampus. J Neurosci 1995; 15: 1768–1777.

    Article  CAS  Google Scholar 

  22. Ueyama T, Kawai Y, Nemoto K, Sekimoto M, Toné S, Senba E . Immobilization stress reduced the expression of neurotrophins and their receptors in the rat brain. Neurosci Res 1997; 28: 103–110.

    Article  CAS  Google Scholar 

  23. Gould E, Tanapat P, McEwen BS, Flügge G, Fuchs E . Proliferation of granule cell precursors in the dentate gyrus of adult monkeys is diminished by stress. Proc Natl Acad Sci USA 1998; 95: 3168–3171.

    Article  CAS  Google Scholar 

  24. Vaidya VA, Terwilliger RMZ, Duman RS . Role of 5-HT2A receptors in the stress-induced down-regulation of brain-derived neurotrophic factor expression in rat hippocampus. Neurosci Lett 1999; 262: 1–4.

    Article  CAS  Google Scholar 

  25. Czéh B, Michaelis T, Watanabe T, Frahm J, Biurrn G, Kampen M et al. Stress-induced changes in cerebral metabolites, hippocampal volume, and cell proliferation are prevented by antidepressant treatment with tianeptine. Proc Natl Acad Sci USA 2001; 98: 12796–12801.

    Article  Google Scholar 

  26. Gould E, Woolley CS, McEwen BS . Naturally occurring cell death in the developing dentate gyrus of the rat. J Comp Neurol 1991; 304: 408–418.

    Article  CAS  Google Scholar 

  27. Cameron HA, Gould E . Adult neurogenesis is regulated by adrenal steroids in the dentate gyrus. Neuroscience 1994; 61: 203–209.

    Article  CAS  Google Scholar 

  28. Gould E, Cameron HA, Daniels CD, Woolley CS, McEwen BS . Adrenal hormones suppress cell division in the adult rat dentate gyrus. J Neurosci 1992; 12: 3642–3650.

    Article  CAS  Google Scholar 

  29. Pencea V, Bingaman KD, Wiegand SJ, Luskin MB . Infusion of brain-derived neurotrophic factor into the lateral ventricle of the adult rat leads to new neurons in the parenchyma of the striatum, septum, thalamus, and hypothalamus. J Neurosci 2001; 21: 6706–6717.

    Article  CAS  Google Scholar 

  30. Benraiss A, Chmielnicki E, Letner K, Roh D, Goldman SA . Adenoviral brain-derived neurtrophic factor induces both neotriatal and olfactory neuronal recruitment from endogenous progenitor cells in the adult forebrain. J Neurosci 2001; 21: 6718–6731.

    Article  CAS  Google Scholar 

  31. Chan PH . Oxygen radicals in focal cerebral ischemia. Brain Pathol 1994; 4: 59–65.

    Article  CAS  Google Scholar 

  32. Medina L, Figueredo-Cardenas G, Reiner A . Differential abundance of superoxide dismutase in interneurons versus projection neurons and in the matrix versus striosome neurons in monkey striatum. Brain Res 1996; 708: 59–70.

    Article  CAS  Google Scholar 

  33. Richardson JS . Brain part monoamines in the neuroendocrine mechanisms activated by immobilization stress in the rat. Int J Neurosci 1984; 23: 57–67.

    Article  CAS  Google Scholar 

  34. Rasmussen K, Jacobs B . Single unit activity of locus coeruleus neurons in the freely moving cat.— II: conditioning and pharmacologic studies. Brain Res 1986; 371: 335–344.

    Article  CAS  Google Scholar 

  35. Rasmussen K, Morilak D, Jacobs B . Single unit activity of locus coeruleus neurons in the freely moving cat.— I: during naturalistic behaviors and in response to simple and complex stimuli. Brain Res 1986; 371: 324–334.

    Article  CAS  Google Scholar 

  36. Kalen P, Rosegren E, Lindvall O, Bjorklund A . Hippocampal noradrenaline and serotonin release over 24 hours as measured by the dialysis technique in freely moving rats: correlation to behavioral activity state, effect of handling and tail-pinch. Eur J Neurosci 1989; 1: 181–188.

    Article  Google Scholar 

  37. Jacobs BL, Abercrombie ED, Fornal CA, Levine ES, Morilak DA, Stafford IL . Single-unit and physiological analyses of brain norepinephrine function in behaving animals. Prog Brain Res 1991; 88: 159–165.

    Article  CAS  Google Scholar 

  38. Nisenbaum LK, Zigmond MJ, Sved AF, Abercrombie ED . Prior exposure to chronic stress results in enhanced synthesis and release of hippocampal norepinephrine in response to a novel stressor. J Neurosci 1991; 11: 1478–1484.

    Article  CAS  Google Scholar 

  39. Bijak M, Misgeld U . Adrenergic modulation of hilar neurons activity and granule cell inhibition in the guinea-pig hippocampal slice. Neuroscience 1995; 67: 541–550.

    Article  CAS  Google Scholar 

  40. Gulyas AI, Acsady L, Freund TF . Structural basis of the cholinergic and serotonergic modulation of GABAergic neurons in the hippocampus. Neurochem Int 1999; 34: 359–372.

    Article  CAS  Google Scholar 

  41. Duman RS, Nakagawa S, Malberg J . Regulation of adult neurogenesis by antidepressant treatment. Neuropsychopharmacology 2001; 25: 836–844.

    Article  CAS  Google Scholar 

  42. Nibuya M, Nestler EJ, Duman RS . Chronic antidepressant administration increases the expression of cAMP response element binding protein (CREB) in rat hippocampus. J Neurosci 1996; 16: 2365–2372.

    Article  CAS  Google Scholar 

  43. Thome J, Sakai N, Shin K, Steffen C, Zhang YJ, Impey S et al. cAMP response element-mediated gene transcription is upregulated by chronic antidepressant treatment. J Neurosci 2000; 20: 4030–4036.

    Article  CAS  Google Scholar 

  44. Kim JE, Nakagawa S, Duman RS . Chronic administration of rolipram, a cAMP phosphodiesterase-4 inhibitor, upregulates neurogenesis in the adult mouse hippocampus. Soc Neurosci Abstr 2000; 26: 2316.

    Google Scholar 

  45. Brezun JM, Daszula A . Serotonergic reinnervation reverses lesion-induced decreases in PSA-NCAM labeling and proliferation of hippocampal cells in adult rats. Hippocampus 2000; 10: 37–46.

    Article  CAS  Google Scholar 

  46. Jacobs B, Tanapat P, Reeves A, Gould E . Serotonin stimulates the production of new hippocampal granule neurons via the 5HT1A receptor in the adult rat. Soc Neurosci Abstr 1998; 24: 1992.

    Google Scholar 

  47. Freund TF, Buzsaki G . Interneurons of the hippocampus. Hippocampus 1996; 6: 347–470.

    Article  CAS  Google Scholar 

  48. Richter-Levin G, Segal M . Serotonin releasers modulate reactivity of the rat hippocampus to afferent stimulation. Neurosci Lett 1988; 94: 173–176.

    Article  CAS  Google Scholar 

  49. Freund TF, Gulyas AI, Acsady L, Gorcs T, Toth K . Serotonergic control of the hippocampus via local inhibitory interneurons. Proc Natl Acad Sci USA 1990; 87: 8501–8505.

    Article  CAS  Google Scholar 

  50. Blier P, Lista A, De Montigny C . Differential properties of pre- and postsynaptic 5-hydroxytryptamine1A receptors in the dorsal raphe and hippocampus: II. Effect of pertussis and cholera toxins. J Pharmacol Exp Ther 1993; 265: 16–23.

    CAS  PubMed  Google Scholar 

  51. Beique JC, De Montigny C, Blier P, Debonnel G . Blockade of 5-hydroxytryptamine and noradrenaline uptake by venlafaxine: a comparative study with paroxetine and desipramine. Br J Pharmacol 1998; 125: 526–532.

    Article  CAS  Google Scholar 

  52. Tanapat P, Galea LAM, Gould E . Stress inhibits the proliferation of granule cell precursors in the developing dentate gyrus. Int J Devl Neurosci 1998; 16: 235–239.

    Article  CAS  Google Scholar 

  53. Gould E, Tanapat P . Stress and hippocampal neurogenesis. Biol Psychiatry 1999; 46: 1472–1479.

    Article  CAS  Google Scholar 

  54. Meller R, Babity JM, Grahame-Smith DG . 5-HT2A receptor activation leads to increased BDNF mRNA expression in C6 glioma cells. Neuromol Med 2002; 1: 197–205.

    Article  CAS  Google Scholar 

  55. Ivy AS, Rodriguez FG, Garcia C, Chen MJ, Russo-Neustadt AA . Noradrenergic and serotonergic blockade inhibits BDNF mRNA activation following exercise and antidepressant. Pharmacol Biochem Behav 2003; 75: 81–88.

    Article  CAS  Google Scholar 

  56. Amateau SK, McCarthy MM . A novel mechanism of dendritic spine plasticity involving estradiol induction of prostaglandin-E2 . J Neurosci 2002; 22: 8586–8596.

    Article  CAS  Google Scholar 

  57. Paxinos G, Watson C . The Rat Brain in Stereotaxic Coordinates. Academic Press: Sydney, Australia 1982.

    Google Scholar 

  58. Gould E, Beylin A, Tanapat P, Reeves A, Shors TJ . Learning enhances adult neurogenesis in the hippocampal formation. Nat Neurosci 1999; 2: 260–265.

    Article  CAS  Google Scholar 

  59. Eisch AJ, Barrot M, Schad CA, Self DW, Nestler EJ . Opiates inhibit neurogenesis in the adult rat hippocampus. Proc Natl Acad Sci USA 2000; 97: 7579–7584.

    Article  CAS  Google Scholar 

  60. Nakagawa S, Kim J, Rena L, Malberg JE, Chen J, Steffen C et al. Regulation of neurogenesis in adult mouse hippocampus by cAMP and the cAMP response element-binding protein. J Neurosci 2002; 22: 3673–3682.

    Article  CAS  Google Scholar 

  61. Conner JM, Lauterborn JC, Yan Q, Gall CM, Varon S . Distribution of brain-derived neurotrophic factor (BDNF) protein and mRNA in the normal adult rat CNS: evidence for anterograde axonal transport. J Neurosci 1997; 17: 2295–2313.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Saskatchewan Health, Canadian Psychiatric Research Foundation, Royal University Hospital Foundation, and a CIHR/Rx & D Postdoctoral Fellowship (HX). The authors are grateful to Gabriel Stegeman for her excellent technical assistance. We thank Drs Sergey Fedoroff, Augusto V Juorio, and Vern Bennett for their helpful comments during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X M Li.

Additional information

DUALITY OF INTEREST

None declared.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, H., Luo, C., Richardson, J. et al. Recovery of hippocampal cell proliferation and BDNF levels, both of which are reduced by repeated restraint stress, is accelerated by chronic venlafaxine. Pharmacogenomics J 4, 322–331 (2004). https://doi.org/10.1038/sj.tpj.6500265

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.tpj.6500265

Keywords

This article is cited by

Search

Quick links