Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Differential regulation of synaptic vesicle proteins by antidepressant drugs

ABSTRACT

Synaptic vesicle proteins (SVP) play a critical role in neurotransmitter release and neural plasticity, and have been implicated in the pathophysiology of psychiatric disorders such as depression. Antidepressant drugs not only alter the level of neurotransmitters, but also modulate de novo gene transcription and synthesis of proteins involved in neural plasticity. In order to investigate the effects of antidepressant compounds on SVP-mRNA levels, the expressions of synaptophysin, synaptotagmin, VAMP, and synapsin-I were analysed by in situ hybridization in rats which had been treated with desipramine, fluoxetine, tranylcypromine, or saline. The results demonstrate that chronic treatment with fluoxetine and tranylcypromine leads to an increased expression of synaptophysin, but decreased expression of synaptotagmin and VAMP in the hippocampus and cerebral cortex. Additionally, synapsin I-mRNA levels in the hippocampus and cerebral cortex are significantly reduced in tranylcypromine-treated animals. This identifies SVP genes as target genes of antidepressant treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 3
Figure 2
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Matthew WD, Tsavaler L, Reichardt LF . Identification of a synaptic vesicle-specific membrane protein with a wide distribution in neuronal and neurosecretory tissue. J Cell Biol 1981; 91: 257–269.

    Article  CAS  Google Scholar 

  2. Jahn R, Schiebler W, Ouiment C, Greengard P . A 38,000-dalton membrane protein (p38) present in synaptic vesicles. Proc Natl Acad Sci USA 1985; 82: 4137–4141.

    Article  CAS  Google Scholar 

  3. Rehm H, Wiedenmann B, Betz H . Molecular characterization of synaptophysin, a major calcium-binding protein of the synaptic vesicle membrane. EMBO J 1986; 5: 535–541.

    Article  CAS  Google Scholar 

  4. Südhof TC, Lottspeich F, Greengard P, Mehl E, Jahn R . A synaptic vesicle protein with a novel cytoplasmic domain and four transmembrane regions. Science 1987; 238: 1142–1144.

    Article  Google Scholar 

  5. Greengard P, Valtorta F, Czernik AJ, Benfenati F . Synaptic vesicle phosphoproteins and regulation of synaptic function. Science 1993; 259: 780–785.

    Article  CAS  Google Scholar 

  6. Janz R, Sudhof TC, Hammer RE, Unni V, Siegelbaum SA, Bolshakov VY . Essential roles in synaptic plasticity for synaptogyrin I and synaptophysin I. Neuron 1999; 24: 687–700.

    Article  CAS  Google Scholar 

  7. Yamada M, Takahashi K, Tsunoda M, Nishioka G, Kudo K, Ohata H et al Differential expression of VAMP2/synaptobrevin-2 after antidepressant and electroconvulsive treatment in rat frontal cortex. Pharmacogenomics J 2002; 2: 377–382.

    Article  CAS  Google Scholar 

  8. Eastwood SL, Burnet PW, Harrison PJ . Altered synaptophysin expression as a marker of synaptic pathology in schizophrenia. Neuroscience 1995; 66: 309–319.

    Article  CAS  Google Scholar 

  9. Horner WG, Falkai P, Chen C, Arango V, Mann JJ, Dwork AJ . Synaptic and plasticity-associated proteins in anterior frontal cortex in severe mental illness. Neuroscience 1999; 91: 1247–1255.

    Article  Google Scholar 

  10. Vawter MP, Thatcher L, Usen N, Hyde TM, Kleinman JE, Freed WJ . Reduction of synapsin in the hippocampus of patients with bipolar disorder and schizophrenia. Mol Psychiatry 2002; 7: 571–578.

    Article  CAS  Google Scholar 

  11. Thome J, Pesold B, Baader M, Hu M, Gewirtz JC, Duman RS et al Stress differentially regulates synaptophysin and synaptotagmin expression in hippocampus. Biol Psychiatry 2001; 50: 809–812.

    Article  CAS  Google Scholar 

  12. Gage FH . Structural plasticity: cause, result, or correlate of depression. Biol Psychiatry 2000; 48: 713–714.

    Article  CAS  Google Scholar 

  13. Sapolsky RM . Atrophy of the hippocampus in posttraumatic stress disorder: how and when? Hippocampus 2001; 11: 90–91.

    Article  CAS  Google Scholar 

  14. Bal-Klara A, Bird MM . The effects of various antidepressant drugs on the fine-structure of neurons of the cingulate cortex in culture. Neuroscience 1990; 37: 685–692.

    Article  CAS  Google Scholar 

  15. Birnstiel S, Haas HL . Acute effects of antidepressant drugs on long-term potentiation (LTP) in rat hippocampal slices. Naunyn-Schmiedeberg's Arch Pharmacol 1991; 344: 79–83.

    Article  CAS  Google Scholar 

  16. Watanabe Y, Saito H, Abe K . Tricyclic antidepressants block NMDA receptor-mediated synaptic responses and induction of long-term potentiation in rat hippocampal slices. Neuropharmacology 1993; 32: 479–486.

    Article  CAS  Google Scholar 

  17. Gacia R . Stress, metaplasticity, and antidepressants. Curr Mol Med 2002; 2: 629–638.

    Article  Google Scholar 

  18. Shakesby AC, Anwyl R, Rowan MJ . Overcoming the effects of stress on synaptic plasticity in the intact hippocampus: rapid actions of serotonergic and antidepressant agents. J Neurosci 2002; 22: 3638–3644.

    Article  CAS  Google Scholar 

  19. Rubenstein JL, Greengard P, Czernik AJ . Calcium-dependent serine phosphorylation of synaptophysin. Synapse 1993; 13: 161–172.

    Article  CAS  Google Scholar 

  20. Hilfiker S, Pieribone VA, Nordstedt C, Greengard P, Czernik AJ . Regulation of synaptotagmin I phosphorylation by multiple protein kinases. J Neurochem 1999; 73: 921–932.

    Article  CAS  Google Scholar 

  21. Littleton JT, Serano TL, Rubin GM, Ganetzky B, Chapman ER . Synaptic function modulated by changes in the ratio of synaptotagmin I and IV. Nature 1999; 400: 757–760.

    Article  CAS  Google Scholar 

  22. Zhong H, Yokoyama CT, Scheuer T, Catterall WA . Reciprocal regulation of P/Q-type Ca2+ channels by SNAP-25, syntaxin and synaptotagmin. Nat Neurosci 1999; 2: 939–941.

    Article  CAS  Google Scholar 

  23. Bargou RCEF, Leube RE . The synaptophysin-encoding gene in rat and man is specifically transcribed in neuroendocrine cells. Gene 1991; 99: 197–204.

    Article  CAS  Google Scholar 

  24. Mizuta M, Inagaki N, Nemoto Y, Matsukura S, Takahashi M, Seino S . Synaptophysin III is a novel isoform of rat synaptotagmin expressed in endocrine and neuronal cells. J Biol Chem 1994; 269: 11675–11678.

    CAS  PubMed  Google Scholar 

  25. McCaffery CA, DeGennary LJ . Determination and analysis of the primary structure of the nerve terminal specific phosphoprotein, synapsin I. EMBO J 1986; 5: 3167–3173.

    Article  CAS  Google Scholar 

  26. Zeng Q, Tan YH, Hong W Rattus norvegicus vesicle-associated membrane protein 5 (Vamp5), mRNA. Direct submission to BLAST (Basic Local Alignment Search Tool) of the NCBI (National Center of Biotechnology Information) 1998 (http://www.ncbi.nlm.nih.gov/).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Thome.

Additional information

DUALITY OF INTEREST

None declared.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rapp, S., Baader, M., Hu, M. et al. Differential regulation of synaptic vesicle proteins by antidepressant drugs. Pharmacogenomics J 4, 110–113 (2004). https://doi.org/10.1038/sj.tpj.6500229

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.tpj.6500229

Keywords

This article is cited by

Search

Quick links