Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A sequence variation in the MOG gene is involved in multiple sclerosis susceptibility in Italy

Abstract

Several studies suggest that the histocompatibility complex (HLA) class I region harbours genes modulating multiple sclerosis (MS) susceptibility independently from the effect of class II alleles. A candidate gene in this region is MOG, encoding the myelin oligodendrocyte glycoprotein. A significant association with the missense variation V142L (rs2857766) was previously reported in a small sample of 50 Italian MS patients. We confirmed this result in two independent Italian sample sets consisting of 878 MS patients and 890 matched controls (P=6.6 × 10−4) and 246 trio families (P=1.5 × 10−3). The comparison of genotype frequencies suggested a dominant-protective effect of L142. In the combined sample sets L142 conferred an odds ratio (OR)=0.70 (95% confidence interval (CI): 0.60–0.82) that remained similar after accounting for HLA-DRB1*15 carrier status. The association with MOG V142L was still significant after conditioning for all DRB1 alleles (P=0.035). Eleven additional single nucleotide polymorphisms in the MOG gene (namely −1077T/C, −910T/C, −875A/G, −93T/C, S5S, Indel L22, V145I, +814C/T, +900A/G, +1024A/T, +1059C/T), two microsatellites in the MOG 5′ flanking (MOGCA) and 3′ untranslated (MOGTAAA) regions and four microsatellites in the HLA-class I region, from HLA-B to HFE, (namely MIB, D6S265, D6S1683 and D6S2239) were tested by transmission disequilibrium test in 199 trio families. None of these polymorphisms or of their haplotypic combinations showed a significant transmission distortion, in the absence of V142L. In conclusion, MOG V142L, or an untested variant in tight-linkage disequilibrium with it, is an independent MS susceptibility-modulating factor in the HLA class I region.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Compston A, Coles A . Multiple sclerosis. Lancet 2002; 359: 1221–1231.

    Article  Google Scholar 

  2. Compston A, Sawcer S . Genetic analysis of multiple sclerosis. Curr Neurol Neurosci Rep 2002; 2: 259–266.

    Article  Google Scholar 

  3. Giordano M, D'Alfonso S, Momigliano-Richiardi P . Genetics of multiple sclerosis: linkage and association studies. Am J Pharmacogenomics 2002; 2: 37–58.

    Article  CAS  Google Scholar 

  4. Dyment DA, Ebers GC, Sadovnick AD . Genetics of multiple sclerosis. Lancet Neurol 2004; 3: 104–110.

    Article  CAS  Google Scholar 

  5. Olerup O, Hillert J . HLA class II-associated genetic susceptibility in multiple sclerosis: a critical evaluation. Tissue Antigens 1991; 38: 1–15.

    Article  CAS  Google Scholar 

  6. Ballerini C, Guerini FR, Rombola G, Rosati E, Massacesi L, Ferrante P et al. HLA-multiple sclerosis association in continental Italy and correlation with disease prevalence in Europe. J Neuroimmunol 2004; 150: 178–185.

    Article  CAS  Google Scholar 

  7. Barcellos LF, Sawcer S, Ramsay PP, Baranzini SE, Thomson G, Briggs F et al. Heterogeneity at the HLA-DRB1 locus and risk for multiple sclerosis. Hum Mol Genet 2006; 15: 2813–2824.

    Article  CAS  Google Scholar 

  8. Marrosu MG, Murru MR, Costa G, Murru R, Muntoni F, Cucca F . DRB1-DQA1-DQB1 loci and multiple sclerosis predisposition in the Sardinian population. Hum Mol Genet 1998; 7: 1235–1237.

    Article  CAS  Google Scholar 

  9. Saruhan-Direskeneli G, Esin S, Baykan-Kurt B, Ornek I, Vaughan R, Eraksoy M . HLA-DR and -DQ associations with multiple sclerosis in Turkey. Hum Immunol 1997; 55: 59–65.

    Article  CAS  Google Scholar 

  10. Coraddu F, Reyes-Yanez MP, Parra A, Gray J, Smith SI, Taylor CJ et al. HLA associations with multiple sclerosis in the Canary Islands. J Neuroimmunol 1998; 87: 130–135.

    Article  CAS  Google Scholar 

  11. Allcock RJ, de la Concha EG, Fernandez-Arquero M, Vigil P, Conejero L, Arroyo R et al. Susceptibility to multiple sclerosis mediated by HLA-DRB1 is influenced by a second gene telomeric of the TNF cluster. Hum Immunol 1999; 60: 1266–1273.

    Article  CAS  Google Scholar 

  12. Brassat D, Salemi G, Barcellos LF, McNeill G, Proia P, Hauser SL et al. The HLA locus and multiple sclerosis in Sicily. Neurology 2005; 64: 361–363.

    Article  CAS  Google Scholar 

  13. Masterman T, Ligers A, Olsson T, Andersson M, Olerup O, Hillert J . HLA-DR15 is associated with lower age at onset in multiple sclerosis. Ann Neurol 2000; 48: 211–219.

    Article  CAS  Google Scholar 

  14. Fogdell-Hahn A, Ligers A, Gronning M, Hillert J, Olerup O . Multiple sclerosis: a modifying influence of HLA class I genes in an HLA class II associated autoimmune disease. Tissue Antigens 2000; 55: 140–148.

    Article  CAS  Google Scholar 

  15. Harbo HF, Lie BA, Sawcer S, Celius EG, Dai KZ, Oturai A . Genes in the HLA class I region may contribute to the HLA class II-associated genetic susceptibility to multiple sclerosis. Tissue Antigens 2004; 63: 237–247.

    Article  CAS  Google Scholar 

  16. Brynedal B, Duvefelt K, Jonasdottir G, Roos IM, Akesson E, Palmgren J et al. HLA-A confers an HLA-DRB1 independent influence on the risk of multiple sclerosis. PLoS ONE 2007; 2: e664.

    Article  Google Scholar 

  17. Yeo TW, De Jager PL, Gregory SG, Barcellos LF, Walton A, Goris A et al. A second major histocompatibility complex susceptibility locus for multiple sclerosis. Ann Neurol 2007; 61: 228–236.

    Article  Google Scholar 

  18. Rubio JP, Bahlo M, Butzkueven H, van Der Mei IA, Sale MM, Dickinson JL et al. Genetic dissection of the human leukocyte antigen region by use of haplotypes of Tasmanians with multiple sclerosis. Am J Hum Genet 2002; 70: 1125–1137.

    Article  CAS  Google Scholar 

  19. Rubio JP, Bahlo M, Stankovich J, Burfoot RK, Johnson LJ, Huxtable S et al. Analysis of extended HLA haplotypes in multiple sclerosis and narcolepsy families confirms a predisposing effect for the class I region in Tasmanian MS patients. Immunogenetics 2007; 59: 177–186.

    Article  CAS  Google Scholar 

  20. Marrosu MG, Murru R, Murru MR, Costa G, Zavattari P, Whalen M et al. Dissection of the HLA association with multiple sclerosis in the founder isolated population of Sardinia. Hum Mol Genet 2001; 10: 2907–2916.

    Article  CAS  Google Scholar 

  21. Johns TG, Bernard CC . The structure and function of myelin oligodendrocyte glycoprotein. J Neurochem 1999; 72: 1–9.

    Article  CAS  Google Scholar 

  22. Amor S, Groome N, Linington C, Morris MM, Dornmair K, Gardinier MV et al. Identification of epitopes of myelin oligodendrocyte glycoprotein for the induction of experimental allergic encephalomyelitis in SJL and Biozzi AB/H mice. J Immunol 1994; 153: 4349–4356.

    CAS  PubMed  Google Scholar 

  23. Bernard CC, Johns TG, Slavin A, Ichikawa M, Ewing C, Liu J et al. Myelin oligodendrocyte glycoprotein: a novel candidate autoantigen in multiple sclerosis. J Mol Med 1997; 75: 77–88.

    Article  CAS  Google Scholar 

  24. Iglesias A, Bauer J, Litzenburger T, Schubart A, Linington C . T- and B-cell responses to myelin oligodendrocyte glycoprotein in experimental autoimmune encephalomyelitis and multiple sclerosis. Glia 2001; 36: 220–234.

    Article  CAS  Google Scholar 

  25. Roth MP, Dolbois L, Borot N, Amadou C, Clanet M, Pontarotti P et al. Three highly polymorphic microsatellites at the human myelin oligodendrocyte glycoprotein locus, 100 kb telomeric to HLA-F. Characterization and relation to HLA haplotypes. Hum Immunol 1995; 43: 276–282.

    Article  CAS  Google Scholar 

  26. Barcellos LF, Thomson G, Carrington M, Schafer J, Begovich AB, Lin P et al. Chromosome 19 single-locus and multilocus haplotype associations with multiple sclerosis. Evidence of a new susceptibility locus in Caucasian and Chinese patients. JAMA 1997; 278: 1256–1261.

    Article  CAS  Google Scholar 

  27. Ohlenbusch A, Pohl D, Hanefeld F . Myelin oligodendrocyte gene polymorphisms and childhood multiple sclerosis. Pediatr Res 2002; 52: 175–179.

    Article  CAS  Google Scholar 

  28. Roth MP, Dolbois L, Borot N, Pontarotti P, Clanet M, Coppin H . Myelin oligodendrocyte glycoprotein (MOG) gene polymorphisms and multiple sclerosis: no evidence of disease association with MOG. J Neuroimmunol 1995; 61: 117–122.

    Article  CAS  Google Scholar 

  29. Marrosu MG, Murru R, Costa G, Melis MC, Rolesu M, Schirru L et al. Variation of the myelin oligodendrocyte glycoprotein gene is not primarily associated with multiple sclerosis in the Sardinian population. BMC Genet 2007; 178: 25.

    Article  Google Scholar 

  30. Gomez-Lira M, Moretto G, Bonamini D, Benedetti MD, Pignatti PF, Rizzuto N et al. Myelin oligodendrocyte glycoprotein polymorphisms and multiple sclerosis. J Neuroimmunol 2002; 133: 241–243.

    Article  CAS  Google Scholar 

  31. Thomson G . Mapping disease genes: family-based association studies. Am J Hum Genet 1995; 57: 487–498.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Stewart CA, Horton R, Allcock RJ, Ashurst JL, Atrazhev AM, Coggill P et al. Complete MHC haplotype sequencing for common disease gene mapping. Genome Res 2004; 14: 1176–1187.

    Article  CAS  Google Scholar 

  33. Rodriguez D, Della Gaspera B, Zalc B, Hauw JJ, Fontaine B, Edan G et al. Identification of a Val 145 Ile substitution in the human myelin oligodendrocyte glycoprotein: lack of association with multiple sclerosis. Mult Scler 1997; 3: 377–381.

    Article  CAS  Google Scholar 

  34. Lincoln MR, Montpetit A, Cader MZ, Saarela J, Dyment DA, Tiislar M et al. A predominant role for the HLA class II region in the association of the MHC region with multiple sclerosis. Nat Genet 2005; 37: 1108–1112.

    Article  CAS  Google Scholar 

  35. Maguire A, Hellier K, Hammans S, May A . X-linked cerebellar ataxia and sideroblastic anaemia associated with a missense mutation in the ABC7 gene predicting V411L. Br J Haematol 2001; 115: 910–917.

    Article  CAS  Google Scholar 

  36. Janssen JC, Lantos PL, Fox NC, Harvey RJ, Beck J, Dickinson A . Autopsy-confirmed familial early-onset Alzheimer disease caused by the L153V presenilin 1 mutation. Arch Neurol 2001; 58: 953–958.

    Article  CAS  Google Scholar 

  37. Esapa CT, Duprez L, Ludgate M, Mustafa MS, Kendall-Taylor P, Vassart G et al. A novel thyrotropin receptor mutation in an infant with severe thyrotoxicosis. Thyroid 1999; 9: 1005–1010.

    Article  CAS  Google Scholar 

  38. Shen XM, Ohno K, Tsujino A, Brengman JM, Gingold M, Sine SM et al. Mutation causing severe myasthenia reveals functional asymmetry of AChR signature cystine loops in agonist binding and gating. J Clin Invest 2003; 111: 497–505.

    Article  CAS  Google Scholar 

  39. Rost S, Fregin A, Ivaskevicius V, Conzelmann E, Hortnagel K, Pelz HJ et al. Mutations in VKORC1 cause warfarin resistance and multiple coagulation factor deficiency type 2. Nature 2004; 427: 537–541.

    Article  CAS  Google Scholar 

  40. Kerlero de Rosbo N, Mendel I, Ben-Nun A . Chronic relapsing experimental autoimmune encephalomyelitis with a delayed onset and an atypical clinical course, induced in PL/J mice by myelin oligodendrocyte glycoprotein (MOG)-derived peptide: preliminary analysis of MOG T cell epitopes. Eur J Immunol 1995; 25: 985–993.

    Article  CAS  Google Scholar 

  41. Linington C, Bradl M, Lassmann H, Brunner C, Vass K . Augmentation of demyelination in rat acute allergic encephalomyelitis by circulating mouse monoclonal antibodies directed against a myelin/oligodendrocyte glycoprotein. Am J Pathol 1988; 130: 443–454.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Storch MK, Stefferl A, Brehm U, Weissert R, Wallstrom E, Kerschensteiner M et al. Autoimmunity to myelin oligodendrocyte glycoprotein in rats mimics the spectrum of multiple sclerosis pathology. Brain Pathol 1998; 8: 681–694.

    Article  CAS  Google Scholar 

  43. Kornek B, Storch MK, Weissert R, Wallstroem E, Stefferl A, Olsson T et al. Multiple sclerosis and chronic autoimmune encephalomyelitis: a comparative quantitative study of axonal injury in active, inactive, and remyelinated lesions. Am J Pathol 2000; 157: 267–276.

    Article  CAS  Google Scholar 

  44. Weissert R, Kuhle J, de Graaf KL, Wienhold W, Herrmann MM, Muller C et al. High immunogenicity of intracellular myelin oligodendrocyte glycoprotein epitopes. J Immunol 2002; 169: 548–556.

    Article  CAS  Google Scholar 

  45. Simons K, Gruenberg J . Jamming the endosomal system: lipid rafts and lysosomal storage diseases. Trends Cell Biol 2000; 10: 459–462.

    Article  CAS  Google Scholar 

  46. Simons K, Ehehalt R . Cholesterol, lipid rafts, and disease. J Clin Invest 2002; 110: 597–603.

    Article  CAS  Google Scholar 

  47. Marta CB, Montano MB, Taylor CM, Taylor AL, Bansal R, Pfeiffer SE . Signaling cascades activated upon antibody cross-linking of myelin oligodendrocyte glycoprotein: potential implications for multiple sclerosis. J Biol Chem 2005; 280: 8985–8993.

    Article  CAS  Google Scholar 

  48. Cartegni L, Chew SL, Krainer AR . Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat Rev Genet 2002; 3: 285–298.

    Article  CAS  Google Scholar 

  49. McDonald WI, Compston A, Edan G, Goodkin D, Hartung HP, Lublin FD et al. Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann Neurol 2001; 50: 121–127.

    Article  CAS  Google Scholar 

  50. Lublin FD, Reingold SC . Defining the clinical course of multiple sclerosis: results of an international survey. Neurology 1996; 48: 907–911.

    Article  Google Scholar 

  51. D'Alfonso S, Giordano M, Mellai M, Lanceni M, Barizzone N, Marchini M et al. Association tests with systemic lupus erythematosus of IL10 markers indicate a direct involvement of a CA repeat in the 5′ regulatory region. Genes Immun 2002; 3: 454–463.

    Article  CAS  Google Scholar 

  52. Jones AC, Austin J, Hansen N, Hoogendoorn B, Oefner PJ, Cheadle JP et al. Optimal temperature selection for mutation detection by denaturing HPLC and comparison to single-stranded conformation polymorphism and heteroduplex analysis. Clin Chem 1999; 45: 1133–1140.

    CAS  PubMed  Google Scholar 

  53. Hoogendoorn B, Owen MJ, Oefner PJ, Williams N, Austin J, O'Donovan MC . Genotyping single nucleotide polymorphisms by primer extension and high performance liquid chromatography. Hum Genet 1999; 104: 89–93.

    Article  CAS  Google Scholar 

  54. Udalova IA, Nedospasov SA, Webb GC, Chaplin DD, Turetskaya RL . Highly informative typing of the human TNF locus using six adjacent polymorphic markers. Genomics 1993; 16: 180–186.

    Article  CAS  Google Scholar 

  55. Grimaldi MC, Clayton J, Pontarotti P, Cambon-Thomsen A, Crouau-Roy B et al. New highly polymorphic microsatellite marker in linkage disequilibrium with HLA-B. Hum Immunol 1996; 51: 89–94.

    Article  CAS  Google Scholar 

  56. Foissac A, Salhi M, Cambon-Thomsen A . Microsatellites in the HLA region: 1999 update. Tissue Antigens 2000; 55: 477–509.

    Article  CAS  Google Scholar 

  57. Barrett JC, Fry B, Maller J, Daly MJ . Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005; 21: 263–265.

    Article  CAS  Google Scholar 

  58. Kruglyak L, Daly MJ, Reeve-Daly MP, Lander ES . Parametric and nonparametric linkage analysis: a unified multipoint approach. Am J Hum Genet 1996; 58: 1347–1363.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Dudbridge F . Pedigree disequilibrium tests for multilocus haplotypes. Genet Epidemiol 2003; 25: 115–121.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Italian Foundation for Multiple Sclerosis (FISM grants 2001/R/44, 2002/R/40 and 2005/R/10); CARIPLO Foundation, Regione Piemonte (grants 2003 and 2004), Ministry of Health (ricerca finalizzata grant 2004.80), Eastern Piedmont University (grants to SD and PMR). NB was supported by a fellowship from FISM (2003/B/2). We thank Dr R Tosi and Dr S Sawcer for their critical suggestions. We are grateful to the patients and their parents.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S D'Alfonso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

D'Alfonso, S., Bolognesi, E., Guerini, F. et al. A sequence variation in the MOG gene is involved in multiple sclerosis susceptibility in Italy. Genes Immun 9, 7–15 (2008). https://doi.org/10.1038/sj.gene.6364437

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gene.6364437

Keywords

This article is cited by

Search

Quick links