Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Full Paper
  • Published:

HLA-DRB1, TAP2/TAP1, and HLA-DPB1 haplotypes in Finnish juvenile idiopathic arthritis: more complexity within the MHC

Abstract

This study further defines genetic susceptibility to JIA in the region centromeric to HLA-DRB1. DNA from 234 Finnish JIA nuclear families and 639 elderly Finnish control individuals was genotyped for five functional SNPs within the TAP2 and TAP1 loci (200 kb centromeric of HLA-DRB1). Subsets of the controls (186) and patients (145) that had been previously typed for HLA-DRB1 were also genotyped by sequence for the HLA-DPB1 locus. Case/control and transmission disequilibrium test (TDT) methods revealed an association with the DPB1*030101 allele for JIA (OR 2.3, 95% CI 1.5–3.5). Notably, a detailed haplotypic analysis of the TAP2/TAP1 loci and their interaction with the HLA-DPB1*030101 and DRB1*08 and *11 alleles showed a variety of over-represented and under-represented TAP2/TAP1 haplotypes not evident in the single marker analysis. The strongest effect was observed in the polyarticular RF negative JIA subgroup for the 2-2-1-2-1 TAP2/TAP1 haplotype (TAP2B and TAP1A alleles) which showed an independent effect from both DRB1*08 and *11 (P<0.000003) and DPB1*030101 (P=0.02). We have provided evidence that the extended haplotypes (including HLA-DRB1, TAP2/TAP1, and HLA-DPB1) of pauciarticular and polyarticular RF negative disease are distinct. This observation may have implications for functional etiological differences between the pauciarticular and polyarticular JIA patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Glass DN, Giannini EH . Juvenile rheumatoid arthritis as a complex genetic trait. Arthritis Rheum 1999; 42: 2261–2268.

    Article  CAS  Google Scholar 

  2. Førre Ø, Smerdel A . Genetic epidemiology of juvenile idiopathic arthritis. Scand J Rheumatol 2002; 31: 123–128.

    Article  Google Scholar 

  3. Albert ED, Scholz S . Juvenile arthritis: genetic update. Baillieres Clin Rheumatol 1998; 12: 209–218.

    Article  CAS  Google Scholar 

  4. Petty RE, Southwood TR, Baum J et al. Revision of the proposed classification criteria for juvenile idiopathic arthritis: Durban, 1997. J Rheumatol 1998; 25: 1991–1994.

    CAS  PubMed  Google Scholar 

  5. Barron KS, Silverman ED, Gonzales JC, Owerbach D, Reveille JD . DNA analysis of HLA-DR, DQ, and DP alleles in children with polyarticular juvenile rheumatoid arthritis. J Rheumatol 1992; 19: 1611–1616.

    CAS  PubMed  Google Scholar 

  6. Barron KS, Joseph AK, Macleod M, Gonzales JC, Owerbach D, Reveille JD . DNA analysis of HLA-DR, DQ and DP genes in pauciarticular juvenile rheumatoid arthritis. J Rheumatol 1991; 18: 1723–1729.

    CAS  PubMed  Google Scholar 

  7. Paul C, Schoenwald U, Truckenbrodt H et al. HLA-DP/DR interaction in early onset pauciarticular juvenile chronic arthritis. Immunogenetics 1993; 37: 442–448.

    Article  CAS  Google Scholar 

  8. Paul C, Haas JP, Schoenwald U et al. HLA class I/class II interaction in early onset pauciarticular juvenile chronic arthritis. Immunogenetics 1994; 39: 61–64.

    Article  CAS  Google Scholar 

  9. Paul C, Yao Z, Nevinny-Stickel C et al. Immunogenetics of juvenile chronic arthritis. I. HLA interaction between A2, DR5/8-DR/DQ, and DPB1*0201 is a general feature of all subsets of early onset pauciarticular juvenile chronic arthritis II. DPB1 polymorphism plays a role in systemic juvenile chronic arthritis. Tissue Antigens 1995; 45: 280–283.

    Article  CAS  Google Scholar 

  10. Ploski R, McDowell TL, Symons JA et al. Interaction between HLA-DR and HLA-DP, and between HLA and interleukin 1 alpha in juvenile rheumatoid arthritis indicates heterogeneity of pathogenic mechanisms of the disease. Hum Immunol 1995; 42: 343–347.

    Article  CAS  Google Scholar 

  11. Ploski R, Flato B, Vinje O, Maksymowych W, Førre Ø, Thorsby E . Association to HLA-DRB1*08, HLA-DPB1*0301 and homozygosity for an HLA-linked proteasome gene in juvenile ankylosing spondylitis. Hum Immunol 1995; 44: 88–96.

    Article  CAS  Google Scholar 

  12. Fernandez-Viña MA, Fink CW, Stastny P . HLA antigens in juvenile arthritis. Pauciarticular and polyarticular juvenile arthritis are immunogenetically distinct. Arthritis Rheum 1990; 33: 1787–1794.

    Article  Google Scholar 

  13. Begovich AB, Bugawan TL, Nepom BS, Klitz W, Nepom GT, Erlich HA . A specific HLA-DP beta allele is associated with pauciarticular juvenile rheumatoid arthritis but not adult rheumatoid arthritis. Proc Natl Acad Sci USA 1989; 86: 9489–9493.

    Article  CAS  Google Scholar 

  14. Cerna M, Vavrincova P, Havelka S, Ivaskova E, Stastny P . Class II alleles in juvenile arthritis in Czech children. J Rheumatol 1994; 21: 159–164.

    CAS  PubMed  Google Scholar 

  15. Ploski R, Vinje O, Rønningen KS et al. HLA class II alleles and heterogeneity of juvenile rheumatoid arthritis. DRB1*0101 may define a novel subset of the disease. Arthritis Rheum 1993; 36: 465–472.

    Article  CAS  Google Scholar 

  16. Prahalad S, Kingsbury DJ, Griffin TA et al. Polymorphism in the MHC-encoded LMP7 gene: association with JRA without functional significance for immunoproteasome assembly. J Rheumatol 2001; 28: 2320–2325.

    CAS  Google Scholar 

  17. Pryhuber KG, Murray KJ, Donnelly P et al. Polymorphism in the LMP2 gene influences disease susceptibility and severity in HLA-B27 associated juvenile rheumatoid arthritis. J Rheumatol 1996; 23: 747–752.

    CAS  PubMed  Google Scholar 

  18. Donn RP, Davies EJ, Holt PL, Thomson W, Ollier W . Increased frequency of TAP2B in early onset pauciarticular juvenile chronic arthritis. Ann Rheum Dis 1994; 53: 261–264.

    Article  CAS  Google Scholar 

  19. Ploski R, Undlien DE, Vinje O, Førre Ø, Thorsby E, Ronningen KS . Polymorphism of human major histocompatibility complex-encoded transporter associated with antigen processing (TAP) genes and susceptibility to juvenile rheumatoid arthritis. Hum Immunol 1994; 39: 54–60.

    Article  CAS  Google Scholar 

  20. Fernandez-Viña MA, Fink C, Sang S, Stastny P . Peptide transporter genes in susceptibility to juvenile arthritis. Hum Immunol 1993; 37 (Suppl 1): 58.

    Google Scholar 

  21. Runstadler JA, Säilä H, Savolainen A et al. Analysis of MHC region genetics in Finnish patients with juvenile idiopathic arthritis: evidence for different locus-specific effects in polyarticular vs pauciarticular subsets and a shared DRB1 epitope. Genes Immun 2003; 4: 326–335.

    Article  CAS  Google Scholar 

  22. Gao X, Fernandez-Viña M, Olsen NJ, Pincus T, Stastny P . Hla-Dpb1 0301 is a major risk factor for rheumatoid factor-negative adult rheumatoid arthritis. Arthritis Rheum 1991; 34: 1310–1312.

    Article  CAS  Google Scholar 

  23. Donn RP, Thomson W, Pepper L et al. Antinuclear antibodies in early onset pauciarticular juvenile chronic arthritis (JCA) are associated with HLA-DQB1*0603: a possible JCA-associated human leucocyte antigen haplotype. Br J Rheum 1995; 34: 461–465.

    Article  CAS  Google Scholar 

  24. Morling N, Friis J, Fugger L et al. DNA polymorphism of HLA class II genes in pauciarticular juvenile rheumatoid arthritis. Tissue Antigens 1991; 38: 16–23.

    Article  CAS  Google Scholar 

  25. Murray K, Thompson SD, Glass DN . Pathogenesis of juvenile chronic arthritis: genetic and environmental factors. Arch Dis Childhood 1997; 77: 530–534.

    Article  CAS  Google Scholar 

  26. Van Kerckhove C, Luyrink L, Elma MS et al. HLA-DP/DR interaction in children with juvenile rheumatoid arthritis. Immunogenetics 1990; 32: 364–368.

    Article  CAS  Google Scholar 

  27. Carrington M, Colonna M, Spies T, Stephens JC, Mann DL . Haplotypic variation of the transporter associated with antigen processing (TAP) genes and their extension of HLA class II region haplotypes. Immunogenetics 1993; 37: 266–273.

    Article  CAS  Google Scholar 

  28. Colonna M, Bresnahan M, Bahram S, Strominger JL, Spies T . Allelic variants of the human putative peptide transporter involved in antigen processing. Proc Natl Acad Sci USA 1992; 89: 3932–3936.

    Article  CAS  Google Scholar 

  29. Powis SH, Tonks S, Mockridge I, Kelly AP, Bodmer JG, Trowsdale J . Alleles and haplotypes of the MHC-encoded ABC transporters TAP1 and TAP2. Immunogenetics 1993; 37: 373–380.

    Article  CAS  Google Scholar 

  30. Smerdel A, Lie BA, Ploski R et al. A gene in the telomeric HLA complex distinct from HLA-A is involved in predisposition to juvenile idiopathic arthritis. Arthritis Rheum 2002; 46: 1614–1619.

    Article  CAS  Google Scholar 

  31. Klitz W, Stephens JC, Grote M, Carrington M . Discordant patterns of linkage disequilibrium of the peptide-transporter loci within the HLA class II region. Am J Hum Genet 1995; 57: 1436–1444.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Jeffreys AJ, Ritchie A, Neumann R . High resolution analysis of haplotype diversity and meiotic crossover in the human TAP2 recombination hotspot. Hum Mol Genet 2000; 9: 725–733.

    Article  CAS  Google Scholar 

  33. Cullen M, Erlich H, Klitz W, Carrington M . Molecular mapping of a recombination hotspot located in the second intron of the human TAP2 locus. Am J Hum Genet 1995; 56: 1350–1358.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Bali D, Gourley S, Kostyu DD et al. Genetic analysis of multiplex rheumatoid arthritis families. Genes Immun 1999; 1: 28–36.

    Article  CAS  Google Scholar 

  35. Brewer Jr EJ, Bass J, Baum J et al. Current proposed revision of JRA Criteria. JRA Criteria Subcommittee of the Diagnostic and Therapeutic Criteria Committee of the American Rheumatism Section of The Arthritis Foundation. Arthritis Rheum 1977; 20 (Suppl 2): 195–199.

    Google Scholar 

  36. Sham PC, Curtis D . Monte Carlo tests for associations between disease and alleles at highly polymorphic loci. Ann Hum Genet 1995; 59 (Part 1): 97–105.

    Article  CAS  Google Scholar 

  37. Laird NM, Horvath S, Xu X . Implementing a unified approach to family-based tests of association. Genet Epidemiol 2000; 19 (Suppl 1): S36–S42.

    Article  Google Scholar 

  38. Horvath S, Xu X, Laird NM . The family based association test method: strategies for studying general genotype–phenotype associations. Eur J Hum Genet 2001; 9: 301–306.

    Article  CAS  Google Scholar 

  39. Stephens M, Smith NJ, Donnelly P . A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 2001; 68: 978–989.

    Article  CAS  Google Scholar 

  40. Svejgaard A, Ryder LP . HLA and disease associations: detecting the strongest association. Tissue Antigens 1994; 43: 18–27.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dr Runstadler was supported by an NRSA postdoctoral fellowship as a part of the training grant in Comparative Medicine at the University of California, Davis. This work was supported in part by NIH Grant #AR44422, the Academy of Finland (Grant 46558), the Päivikki and Sakari Sohlberg Foundation, the EVO funds of the Rheumatism Association Hospital, and the Helsinki University Central Hospital Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JA Runstadler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Runstadler, J., Säilä, H., Savolainen, A. et al. HLA-DRB1, TAP2/TAP1, and HLA-DPB1 haplotypes in Finnish juvenile idiopathic arthritis: more complexity within the MHC. Genes Immun 5, 562–571 (2004). https://doi.org/10.1038/sj.gene.6364129

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gene.6364129

Keywords

This article is cited by

Search

Quick links