Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Genetic control of innate immune responses against cytomegalovirus: MCMV meets its match

Abstract

Cytomegalovirus (CMV) is a widespread pathogen that is responsible for severe disease in immunocompromised individuals and probably, associated with vascular disease in the general population. There is increasing evidence that cells of the innate immune system play a key role in controlling this important pathogen. This is particularly evident in the experimental murine CMV (MCMV) model of infection which has revealed an important role for natural killer (NK) cells in controlling early viral replication after infection with MCMV. In this model, different strains of inbred mice exhibit striking differences in their level of susceptibility to MCMV infection. Genetic studies, performed almost 10 years ago, revealed that this pattern of susceptibility/resistance can be attributed to a single genetic locus termed Cmv1 and recently several groups that have been working on the mapping and identification of Cmv1 have met with success. Interestingly, Cmv1 is allelic to a member of the Ly49 gene family, which encode activating or inhibitory transmembrane receptors present on the surface of NK cells. All Ly49 receptors characterized to date interact with MHC class I molecules on potential target cells, resulting in the accumulation of signals to the NK to either ‘kill’ or ‘ignore’ the cell based upon the repertoire of MHC class I molecules expressed. The identification of Cmv1 as Ly49H, a stimulatory member of the Ly49 family, adds an interesting twist to the Ly49 story. Although the ligand of Ly49H is not yet known, there is already compelling evidence that the ligand is upregulated on virally infected cells, resulting in specific activation of Ly49H-expressing NK cells. This review provides an historical perspective of the MCMV infection model from its inception to the discovery of the gene responsible for the phenotype and provides a basis for further experiments aimed at understanding the role of NK cells, in general, and Ly49H, in particular, in mediating resistance to cytomegalovirus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Britt W, Alford CA . Cytomegalovirus In: Fields BN (eds) Fields Virology Lippincott-Raven: New York 1996 pp 2493–2523

    Google Scholar 

  2. Rawlinson WD . Broadsheet. Number 50: diagnosis of human cytomegalovirus infection and disease Pathology 1999 31: 109–115

    Article  CAS  PubMed  Google Scholar 

  3. Soderberg-Naucler C, Nelson JY . Human cytomegalovirus latency and reactivation – a delicate balance between the virus and its host’s immune system Intervirology 1999 42: 314–321

    Article  CAS  PubMed  Google Scholar 

  4. Reusser P . Current concepts and challenges in the prevention and treatment of viral infections in immunocompromised cancer patients Support Care Cancer 1998 6: 39–45

    Article  CAS  PubMed  Google Scholar 

  5. Reusser P, Attenhofer R, Hebart H, Helg C, Chapuis B, Einsele H . Cytomegalovirus-specific T-cell immunity in recipients of autologous peripheral blood stem cell or bone marrow transplants Blood 1997 89: 3873–3879

    Article  CAS  PubMed  Google Scholar 

  6. Soderberg-Naucler C, Emery VC . Viral infections and their impact on chronic renal allograft dysfunction Transplantation 2001 71: SS24–SS30

    CAS  PubMed  Google Scholar 

  7. Trincado DE, Scott GM, White PA, Hunt C, Rasmussen L, Rawlinson WD . Human cytomegalovirus strains associated withcongenital and perinatal infections J Med Virol 2000 61: 481–487

    Article  CAS  PubMed  Google Scholar 

  8. Demmler GJ . Infectious Diseases Society of America and Centers for Disease Control. Summary of a workshop on surveillance for congenital cytomegalovirus disease Rev Infect Dis 1991 13: 315–329

    Article  CAS  PubMed  Google Scholar 

  9. Hurme M, Helminen M . Resistance to human cytomegalovirus infection may be influenced by genetic polymorphisms of the tumour necrosis factor-alpha and interleukin-1 receptor antagonist genes Scand J Infect Dis 1998 30: 447–449

    Article  CAS  PubMed  Google Scholar 

  10. Kaufman DB, Leventhal JR, Gallon LG et al. Risk factors and impact of cytomegalovirus disease in simultaneous pancreas-kidney transplantation Transplantation 2001 72: 1940–1945

    Article  CAS  PubMed  Google Scholar 

  11. Singh N, Wagener MM, Gayowski T . Seasonal pattern of early mortality and infectious complications in liver transplant recipients Liver Transpl 2001 7: 884–889

    Article  CAS  PubMed  Google Scholar 

  12. Nachbaur D, Bonatti H, Oberaigner W et al. Survival after bone marrow transplantation from cytomegalovirus seropositive sibling donors Lancet 2001 358: 1157–1159

    Article  CAS  PubMed  Google Scholar 

  13. Farmer DG, McDiarmid SV, Yersiz H et al. Outcome after intestinal transplantation: results from one center’s 9-year experience; discussion 1031–2 Arch Surg 2001 136: 1027–1031

    Article  CAS  PubMed  Google Scholar 

  14. Rubin RH . Importance of CMV in the transplant population Transpl Infect Dis 1999 1 (Suppl 1) : 3–7

    PubMed  Google Scholar 

  15. de Medeiros CR, Moreira VA, Pasquini R . Cytomegalovirus as a cause of very late interstitial pneumonia after bone marrow transplantation Bone Marrow Transplant 2000 26: 443–444

    Article  CAS  PubMed  Google Scholar 

  16. Sparrelid E, Emanuel D, Fehniger T, Andersson U, Andersson J . Interstitial pneumonitis in bone marrow transplant recipients is associated with local production of TH2-type cytokines and lack of T cell-mediated cytotoxicity Transplantation 1997 63: 1782–1789

    Article  CAS  PubMed  Google Scholar 

  17. Stratta RJ . Clinical patterns and treatment of cytomegalovirus infection after solid-organ transplantation Transplant Proc 1993 25: 15–21

    CAS  PubMed  Google Scholar 

  18. Tolkoff-Rubin NE, Rubin RH . Viral infections in organ transplantation Transplant Proc 1998 30: 2060–2063

    Article  CAS  PubMed  Google Scholar 

  19. Snydman DR . Infection in solid organ transplantation Transpl Infect Dis 1999 1: 21–28

    Article  CAS  PubMed  Google Scholar 

  20. Yamada S, Takatsuka H, Takemoto Y et al. Association of cytomegalovirus interstitial pneumonitis with HLA-type following allogeneic bone marrow transplantation Bone Marrow Transplant 2000 25: 861–865

    Article  CAS  PubMed  Google Scholar 

  21. Salmon-Ceron D . Cytomegalovirus infection: the point in 2001 HIV Med 2001 2: 255–259

    Article  CAS  PubMed  Google Scholar 

  22. Murphy EL, Collier AC, Kalish LA et al. Highly active antiretroviral therapy decreases mortality and morbidity in patients with advanced HIV disease Ann Intern Med 2001 135: 17–26

    Article  CAS  PubMed  Google Scholar 

  23. Welch K, Kissinger P, Bessinger R, Dascomb K, Morse A, Gleckler E . The clinical profile of end-stage AIDS AIDS Patient Care STDS 1998 12: 125–129

    Article  CAS  PubMed  Google Scholar 

  24. Vercellotti GM . Overview of infections and cardiovascular diseases J Allergy Clin Immunol 2001 108: S117–S120

    Article  CAS  PubMed  Google Scholar 

  25. Levi M . CMV endothelitis as a factor in the pathogenesis of atherosclerosis Cardiovasc Res 2001 50: 432–433

    Article  CAS  PubMed  Google Scholar 

  26. Valantine HA . Role of CMV in transplant coronary artery disease and survival after heart transplantation Transpl Infect Dis 1999 1 (Suppl 1) : 25–30

    PubMed  Google Scholar 

  27. Zhou YF, Leon MB, Waclawiw MA et al. Association between prior cytomegalovirus infection and the risk of restenosis after coronary atherectomy N Engl J Med 1996 335: 624–630

    Article  CAS  PubMed  Google Scholar 

  28. Neumann FJ, Kastrati A, Miethke T et al. Previous cytomegalovirus infection and restenosis after coronary stent placement Circulation 2001 104: 1135–1139

    Article  CAS  PubMed  Google Scholar 

  29. Koskinen PK, Kallio EA, Tikkanen JM, Sihvola RK, Hayry PJ, Lemstrom KB . Cytomegalovirus infection and cardiac allograft vasculopathy Transpl Infect Dis 1999 1: 115–126

    Article  CAS  PubMed  Google Scholar 

  30. Epstein SE, Speir E, Zhou YF, Guetta E, Leon M, Finkel T . The role of infection in restenosis and atherosclerosis: focus on cytomegalovirus Lancet 1996 348 (Suppl 1) : s13–s17

    Article  CAS  PubMed  Google Scholar 

  31. Hsich E, Zhou YF, Paigen B, Johnson TM, Burnett MS, Epstein SE . Cytomegalovirus infection increases development of atherosclerosis in Apolipoprotein-E knockout mice Atherosclerosis 2001 156: 23–28

    Article  CAS  PubMed  Google Scholar 

  32. Burnett MS, Gaydos CA, Madico GE et al. Atherosclerosis in apoE knockout mice infected with multiple pathogens J Infect Dis 2001 183: 226–231

    Article  CAS  PubMed  Google Scholar 

  33. Fabricant CG, Fabricant J . Atherosclerosis induced by infection with Marek’s disease herpesvirus in chickens Am Heart J 1999 138: S465–S468

    Article  CAS  PubMed  Google Scholar 

  34. Villarreal EC . Current and potential therapies for the treatment of herpesvirus infections Prog Drug Res 2001 56: 185–228

    Google Scholar 

  35. Zaia JA, Sissons JG, Riddell S et al. Status of cytomegalovirus prevention and treatment in 2000 Hematology (Am Soc Hematol Educ Program) 2000 1: 339–355

    Article  Google Scholar 

  36. Chou S . Antiviral drug resistance in human cytomegalovirus Transpl Infect Dis 1999 1: 105–114

    Article  CAS  PubMed  Google Scholar 

  37. Emery VC . Progress in understanding cytomegalovirus drug resistance J Clin Virol 2001 21: 223–228

    Article  CAS  PubMed  Google Scholar 

  38. Biron CA, Nguyen KB, Pien GC, Cousens LP, Salazar-Mather TP . Natural killer cells in antiviral defense: function and regulation by innate cytokines Annu Rev Immunol 1999 17: 189–220

    Article  CAS  PubMed  Google Scholar 

  39. Trinchieri G . Biology of natural killer cells Adv Immunol 1989 47: 187–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tay CH, Szomolanyi-Tsuda E, Welsh RM . Control of infections by NK cells Curr Top Microbiol Immunol 1998 230: 193–220

    CAS  PubMed  Google Scholar 

  41. Venema H, van den Berg AP, van Zanten C, van Son WJ, van der GM, The TH . Natural killer cell responses in renal transplant patients with cytomegalovirus infection J Med Virol 1994 42: 188–192

    Article  CAS  PubMed  Google Scholar 

  42. Slavin M, Dobbs S, Crawford S, Bowden R . Interleukin-2, interferon-gamma and natural killer cell activity in bronchoalveolar lavage fluid from marrow transplant recipients with cytomegalovirus pneumonia Bone Marrow Transplant 1993 11: 113–118

    CAS  PubMed  Google Scholar 

  43. Biron CA, Byron KS, Sullivan JL . Severe herpesvirus infections in an adolescent without natural killer cells N Engl J Med 1989 320: 1731–1735

    Article  CAS  PubMed  Google Scholar 

  44. Sullivan JL, Woda BA . X-linked lymphoproliferative syndrome Immunodefic Rev 1989 1: 325–347

    CAS  PubMed  Google Scholar 

  45. Coffey AJ, Brooksbank RA, Brandau O et al. Host response to EBV infection in X-linked lymphoproliferative disease results from mutations in an SH2-domain encoding gene Nat Genet 1998 20: 129–135

    Article  CAS  PubMed  Google Scholar 

  46. Sayos J, Wu C, Morra M et al. The X-linked lymphoproliferative-disease gene product SAP regulates signals induced through the co-receptor SLAM Nature 1998 395: 462–469

    Article  CAS  PubMed  Google Scholar 

  47. Tangye SG, Lazetic S, Woollatt E, Sutherland GR, Lanier LL, Phillips JH . Cutting edge: human 2B4, an activating NK cell receptor, recruits the protein tyrosine phosphatase SHP-2 and the adaptor signaling protein SAP J Immunol 1999 162: 6981–6985

    CAS  PubMed  Google Scholar 

  48. Parolini S, Bottino C, Falco M et al. X-linked lymphoproliferative disease. 2B4 molecules displaying inhibitory rather than activating function are responsible for the inability of natural killer cells to kill Epstein–Barr virus-infected cells J Exp Med 2000 192: 337–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sayos J, Nguyen KB, Wu C et al. Potential pathways for regulation of NK and T cell responses: differential X-linked lymphoproliferative syndrome gene product SAP interactions with SLAM and 2B4 Int Immunol 2000 12: 1749–1757

    Article  CAS  PubMed  Google Scholar 

  50. Shanley JD . Host genetic factors influence murine cytomegalovirus lung infection and interstitial pneumonitis J Gen Virol 1984 65: 2121–2128

    Article  PubMed  Google Scholar 

  51. Trgovcich J, Stimac D, Polic B et al. Immune responses and cytokine induction in the development of severe hepatitis during acute infections with murine cytomegalovirus Arch Virol 2000 145: 2601–2618

    Article  CAS  PubMed  Google Scholar 

  52. Hayashi K, Suwa Y, Shimomura Y, Ohashi Y . Pathogenesis of ocular cytomegalovirus infection in the immunocompromised host J Med Virol 1995 47: 364–369

    Article  CAS  PubMed  Google Scholar 

  53. Hayashi K, Kurihara I, Uchida Y . Studies of ocular murine cytomegalovirus infection Invest Ophthalmol Vis Sci 1985 26: 486–493

    CAS  PubMed  Google Scholar 

  54. Shanley JD, Biczak L, Forman SJ . Acute murine cytomegalovirus infection induces lethal hepatitis J Infect Dis 1993 167: 264–269

    Article  CAS  PubMed  Google Scholar 

  55. Shellam GR, Flexman JP . Genetically determined resistance to murine cytomegalovirus and herpes simplex virus in newborn mice J Virol 1986 58: 152–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Fitzgerald NA, Shellam GR . Host genetic influences on fetal susceptibility to murine cytomegalovirus after maternal or fetal infection J Infect Dis 1991 163: 276–281

    Article  CAS  PubMed  Google Scholar 

  57. Allan JE, Shellam GR . Genetic control of murine cytomegalovirus infection: virus titres in resistant and susceptible strains of mice Arch Virol 1984 81: 139–150

    Article  CAS  PubMed  Google Scholar 

  58. Shanley JD . Host genetic factors influence murine cytomegalovirus lung infection and interstitial pneumonitis J Gen Virol 1984 65: 2121–2128

    Article  PubMed  Google Scholar 

  59. Biron CA, Brossay L . NK cells and NKT cells in innate defense against viral infections Curr Opin Immunol 2001 13: 458–464

    Article  CAS  PubMed  Google Scholar 

  60. Scalzo AA, Fitzgerald NA, Wallace CR et al. The effect of the Cmv-1 resistance gene, which is linked to the natural killer cell gene complex, is mediated by natural killer cells J Immunol 1992 149: 581–589

    CAS  PubMed  Google Scholar 

  61. Bukowski JF, Welsh RM . The role of natural killer cells and interferon in resistance to acute infection of mice with herpes simplex virus type 1 J Immunol 1986 136: 3481–3485

    CAS  PubMed  Google Scholar 

  62. Welsh RM, Brubaker JO, Vargas-Cortes M, O’Donnell CL . Natural killer (NK) cell response to virus infections in mice with severe combined immunodeficiency. The stimulation of NK cells and the NK cell-dependent control of virus infections occur independently of T and B cell function J Exp Med 1991 173: 1053–1063

    Article  CAS  PubMed  Google Scholar 

  63. Ellison AR, Yang L, Voytek C, Margolis TP . Establishment of latent herpes simplex virus type 1 infection in resistant, sensitive, and immunodeficient mouse strains Virology 2000 268: 17–28

    Article  CAS  PubMed  Google Scholar 

  64. Riera L, Gariglio M, Valente G et al. Murine cytomegalovirus replication in salivary glands is controlled by both perforin and granzymes during acute infection Eur J Immunol 2000 30: 1350–1355

    Article  CAS  PubMed  Google Scholar 

  65. Tsunobuchi H, Nishimura H, Goshima F et al. A protective role of interleukin-15 in a mouse model for systemic infection with herpes simplex virus Virology 2000 275: 57–66

    Article  CAS  PubMed  Google Scholar 

  66. Pien GC, Satoskar AR, Takeda K, Akira S, Biron CA . Cutting edge: selective IL-18 requirements for induction of compartmental IFN-gamma responses during viral infection J Immunol 2000 165: 4787–4791

    Article  CAS  PubMed  Google Scholar 

  67. Carr JA, Rogerson JA, Mulqueen MJ, Roberts NA, Nash AA . The role of endogenous interleukin-12 in resistance to murine cytomegalovirus (MCMV) infection and a novel action for endogenous IL-12 p40 J Interferon Cytokine Res 1999 19: 1145–1152

    Article  CAS  PubMed  Google Scholar 

  68. Dutia BM, Allen DJ, Dyson H, Nash AA . Type 1 interferons and IRF-1 play a critical role in the control of a gammaherpesvirus infection Virology 1999 261: 173–179

    Article  CAS  PubMed  Google Scholar 

  69. Fernandez JA, Rodrigues EG, Tsuji M . Multifactorial protective mechanisms to limit viral replication in the lung of mice during primary murine cytomegalovirus infection Viral Immunol 2000 13: 287–295

    Article  CAS  PubMed  Google Scholar 

  70. Kumaraguru U, Davis IA, Deshpande S, Tevethia SS, Rouse BT . Lymphotoxin alpha −/− mice develop functionally impaired CD8+ T cell responses and fail to contain virus infection of the central nervous system J Immunol 2001 166: 1066–1074

    Article  CAS  PubMed  Google Scholar 

  71. Salazar-Mather TP, Orange JS, Biron CA . Early murine cytomegalovirus (MCMV) infection induces liver natural killer (NK) cell inflammation and protection through macrophage inflammatory protein 1 alpha (MIP-1 alpha)-dependent pathways J Exp Med 1998 187: 1–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Rager-Zisman B, Quan PC, Rosner M, Moller JR, Bloom BR . Role of NK cells in protection of mice against herpes simplex virus-1 infection J Immunol 1987 138: 884–888

    CAS  PubMed  Google Scholar 

  73. Ghiasi H, Cai S, Perng G, Nesburn AB, Weschsler SL . Perforin pathway is essential for protection of mice against lethal ocular HSV-1 challenge but not corneal scarring Virus Res 1999 65: 97–101

    Article  CAS  PubMed  Google Scholar 

  74. MacLean A, Wei XQ, Huang FP, AI Alem UA, Chan WL, Liew FY . Mice lacking inducible nitric-oxide synthase are more susceptible to herpes simplex virus infection despite enhanced Th1 cell responses J Gen Virol 1998 79: 825–830

    Article  CAS  PubMed  Google Scholar 

  75. Morra M, Howie D, Grande MS et al. X-linked lymphoproliferative disease: a progressive immunodeficiency Annu Rev Immunol 2001 19: 657–682

    Article  CAS  PubMed  Google Scholar 

  76. Wu C, Nguyen KB, Pien GC et al. SAP controls T cell responses to virus and terminal differentiation of TH2 cells Nat Immunol 2001 2: 410–414

    Article  CAS  PubMed  Google Scholar 

  77. Lee SH, Girard S, Macina D et al. Susceptibility to mouse cytomegalovirus is associated with deletion of an activating natural killer cell receptor of the C-type lectin superfamily Nat Genet 2001 28: 42–45

    CAS  PubMed  Google Scholar 

  78. Brown MG, Dokun AO, Heusel JW et al. Vital involvement of a natural killer cell activation receptor in resistance to viral infection Science 2001 292: 934–937

    Article  CAS  PubMed  Google Scholar 

  79. Shellam GR, Allan JE, Papadimitriou JM, Bancroft GJ . Increased susceptibility to cytomegalvirus infection in beige mutant mice Proc Natl Acad Sci USA 1981 78: 5104–5108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Barbosa MD, Nguyen QA, Tchernev VT et al. Identification of the homologous beige and Chediak-Higashi syndrome genes Nature 1996 382: 262–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Chalmer JE, Mackenzie JS, Stanley NF . Resistance to murine cytomegalovirus linked to the major histocompatibility complex of the mouse J Gen Virol 1977 37: 107–114

    Article  CAS  PubMed  Google Scholar 

  82. Grundy JE, Mackenzie JS, Stanley NF . Influence of H-2 and non-H-2 genes on resistance to murine cytomegalovirus infection Infect Immun 1981 32: 277–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Price P, Winter JG, Nikoletti S, Hudson JB, Shellam GR . Functional changes in murine macrophages infected with cytomegalvirus relate to H-2-determined sensitivity to infection J Virol 1987 61: 3602–3606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wykes MN, Shellam GR, McCluskey J, Kast WM, Dallas PB, Price P . Murine cytomegalovirus interacts with major histocompatibility complex class I molecules to establish cellular infection J Virol 1993 67: 4182–4189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Scalzo AA, Fitzgerald NA, Simmons A, La Vista AB, Shellam GR . Cmv-1, a genetic locus that controls murine cytomegalovirus replication in the spleen J Exp Med 1990 171: 1469–1483

    Article  CAS  PubMed  Google Scholar 

  86. Price P, Olver SD, Gibbons AE, Teo HK, Shellam GR . Characterization of thymic involution induced by murine cytomegalovirus infection Immunol Cell Biol 1993 71: 155–165

    Article  PubMed  Google Scholar 

  87. Dokun AO, Kim S, Smith HR, Kang HS, Chu DT, Yokoyama WM . Specific and nonspecific NK cell activation during virus infection Nat Immunol 2001 2: 951–956

    Article  CAS  PubMed  Google Scholar 

  88. Tay CH, Welsh RM . Distinct organ-dependent mechanisms for the control of murine cytomegalovirus infection by natural killer cells J Virol 1997 71: 267–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Brown MG, Fulmek S, Matsumoto K et al. A 2-Mb YAC contig and physical map of the natural killer gene complex on mouse chromosome 6 Genomics 1997 42: 16–25

    Article  CAS  PubMed  Google Scholar 

  90. Newmark PA . Boswell RE. The mago nashi locus encodes an essential product required for germ plasm assembly in Drosophila Development 1994 120: 1303–1313

    Article  CAS  PubMed  Google Scholar 

  91. Coles LS, Diamond P, Occhiodoro F, Vadas MA, Shannon MF . Cold shock domain proteins repress transcription from the GM-CSF promoter Nucleic Acids Res 1996 24: 2311–2317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Adler E, Hoon MA, Mueller KL, Chandrashekar J, Ryba NJ, Zuker CS . A novel family of mammalian taste receptors Cell 2000 100: 693–702

    Article  CAS  PubMed  Google Scholar 

  93. Maeda N, Kim HS, Azen EA, Smithies O . Differential RNA splicing and post-translational cleavages in the human salivary proline-rich protein gene system J Biol Chem 1985 260: 11123–11130

    Article  CAS  PubMed  Google Scholar 

  94. Raulet DH, Vance RE, McMahon CW . Regulation of the natural killer cell receptor repertoire Annu Rev Immunol 2001 19: 291–330

    Article  CAS  PubMed  Google Scholar 

  95. Ryan JC, Turck J, Niemi EC, Yokoyama WM, Seaman WE . Molecular cloning of the NK1. 1 antigen, a member of the NKR-P1 family of natural killer cell activation molecules J Immunol 1992 149: 1631–1635

    CAS  PubMed  Google Scholar 

  96. Yi T, Gilbert DJ, Jenkins NA, Copeland NG, Ihle JN . Assignment of a novel protein tyrosine phosphatase gene (Hcph) to mouse chromosome 6 Genomics 1992 14: 793–795

    Article  CAS  PubMed  Google Scholar 

  97. Westgaard IH, Berg SF, Orstavik S, Fossum S, Dissen E . Identification of a human member of the Ly-49 multigene family Eur J Immunol 1998 28: 1839–1846

    Article  CAS  PubMed  Google Scholar 

  98. Barten R, Torkar M, Haude A, Trowsdale J, Wilson MJ . Divergent and convergent evolution of NK-cell receptors Trends Immunol 2001 22: 52–57

    Article  CAS  PubMed  Google Scholar 

  99. Wilson MJ, Torkar M, Haude A et al. Plasticity in the organization and sequences of human KIR/ILT gene families Proc Natl Acad Sci USA 2000 97: 4778–4783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Biassoni R, Pessino A, Bottino C, Pende D, Moretta L, Moretta A . The murine homologue of the human NKp46, a triggering receptor involved in the induction of natural cytotoxicity Eur J Immunol 1999 29: 1014–1020

    Article  CAS  PubMed  Google Scholar 

  101. Kubagawa H, Cooper MD, Chen CC et al. Paired immunoglobulin-like receptors of activating and inhibitory types Curr Top Microbiol Immunol 1999 244: 137–149

    CAS  PubMed  Google Scholar 

  102. Idris AH, Iizuka K, Smith HR, Scalzo AA, Yokoyama WM . Genetic control of natural killing and in vivo tumor elimination by the Chok locus J Exp Med 1998 188: 2243–2256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Beebe AM, Mauze S, Schork NJ, Coffman RL . Serial backcross mapping of multiple loci associated with resistance to Leishmania major in mice Immunity 1997 6: 551–557

    Article  CAS  PubMed  Google Scholar 

  104. Melanitou E, Joly F, Lathrop M, Boitard C, Avner P . Evidence for the presence of insulin-dependent diabetes-associated alleles on the distal part of mouse chromosome 6 Genome Res 1998 8: 608–620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Delano ML, Brownstein DG . Innate resistance to lethal mousepox is genetically linked to the NK gene complex on chromosome 6 and correlates with early restriction of virus replication by cells with an NK phenotype J Virol 1995 69: 5875–5877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Dissen E, Ryan JC, Seaman WE, Fossum S . An autosomal dominant locus, Nka, mapping to the Ly-49 region of a rat natural killer (NK) gene complex, controls NK cell lysis of allogeneic lymphocytes J Exp Med 1996 183: 2197–2207

    Article  CAS  PubMed  Google Scholar 

  107. Jansson AM, Jacobsson L, Luthman H, Lorentzen JC . Susceptibility to oil-induced arthritis linked to Oia2 on chromosome 4 in a DA(DA × PVG.1AV1) backcross Transplant Proc 1999 31: 1597–1599

    Article  CAS  PubMed  Google Scholar 

  108. Ikeda H, Lethe B, Lehmann F et al. Characterization of an antigen that is recognized on a melanoma showing partial HLA loss by CTL expressing an NK inhibitory receptor Immunity 1997 6: 199–208

    Article  CAS  PubMed  Google Scholar 

  109. Yen JH, Moore BE, Nakajima T et al. Major histocompatibility complex class I-recognizing receptors are disease risk genes in rheumatoid arthritis J Exp Med 2001 193: 1159–1167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Depatie C, Muise E, Lepage P, Gross P, Vidal SM . High-resolution linkage map in the proximity of the host resistance locus Cmv1 Genomics 1997 39: 154–163

    Article  CAS  PubMed  Google Scholar 

  111. Depatie C, Chalifour A, Pare C, Lee SH, Vidal SM, Lemieux S . Assessment of Cmv1 candidates by genetic mapping and in vivo antibody depletion of NK cell subsets Int Immunol 1999 11: 1541–1551

    Article  CAS  PubMed  Google Scholar 

  112. Depatie C, Lee SH, Stafford A et al. Sequence-ready BACcontig, physical, and transcriptional map of a 2-Mb region overlapping the mouse chromosome 6 host-resistance locus Cmv1 Genomics 2000 66: 161–174

    Article  CAS  PubMed  Google Scholar 

  113. Melanitou E, Simon-Chazottes D, Guenet JL, Rougeon F . The gene coding for the kidney androgen-regulated protein (Kap), maps between the Gapd and Kras-2 genes on mouse chromosome 6 Mamm Genome 1991 1: 191–192

    Article  CAS  PubMed  Google Scholar 

  114. Golub TR, Barker GF, Lovett M, Gilliland DG . Fusion of PDGF receptor beta to a novel ets-like gene, tel, in chronic myelomonocytic leukemia with t(5;12) chromosomal translocation Cell 1994 77: 307–316

    Article  CAS  PubMed  Google Scholar 

  115. Brown MG, Zhang J, Du Y, Stoll J, Yokoyama WM, Scalzo AA . Localization on a physical map of the NKC-linked Cmv1 locus between Ly49b and the Prp gene cluster on mouse chromosome 6 J Immunol 1999 163: 1991–1999

    CAS  PubMed  Google Scholar 

  116. Brennan J, Lemieux S, Freeman JD, Mager DL, Takei F . Heterogeneity among Ly-49C natural killer (NK) cells: characterization of highly related receptors with differing functions and expression patterns J Exp Med 1996 184: 2085–2090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Makrigiannis AP, Anderson SK . Ly49 gene expression in different inbred mouse strains Immunol Res 2000 21: 39–47

    Article  CAS  PubMed  Google Scholar 

  118. Lee SH, Gitas J, Zafer A et al. Haplotype mapping indicates two independent origins for the Cmv1s susceptibility allele to cytomegalovirus infection and refines its localization within the Ly49 cluster Immunogenetics 2001 53: 501–505

    Article  CAS  PubMed  Google Scholar 

  119. Brown MG, Scalzo AA, Stone LR et al. Natural killer gene complex (Nkc) allelic variability in inbred mice: evidence for Nkc haplotypes Immunogenetics 2001 53: 584–591

    Article  CAS  PubMed  Google Scholar 

  120. Makrigiannis AP, Pau AT, Saleh A, Winkler-Pickett R, Ortaldo JR, Anderson SK . Class I mhc-binding characteristics of the 129/j ly49 repertoire J Immunol 2001 166: 5034–5043

    Article  CAS  PubMed  Google Scholar 

  121. Taylor BA, Wnek C, Kotlus BS, Roemer N, Mac Taggart T, Phillips SJ . Genotyping new BXD recombinant inbred mouse strains and comparison of BXD and consensus maps Mamm Genome 1999 10: 335–348

    Article  CAS  PubMed  Google Scholar 

  122. Daniels KA, Devora G, Lai WC, O’Donnell CL, Bennett M, Welsh RM . Murine cytomegalovirus is regulated by a discrete subset of natural killer cells reactive with monoclonal antibody to Ly49H J Exp Med 2001 194: 29–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Anderson SK, Ortaldo JR, McVicar DW . The ever-expanding Ly49 gene family: repertoire and signaling Immunol Rev 2001 181: 79–89

    Article  CAS  PubMed  Google Scholar 

  124. Ortaldo JR, Winkler-Pickett R, Mason AT, Mason LH . The Ly-49 family: regulation of cytotoxicity and cytokine production in murine CD3+ cells J Immunol 1998 160: 1158–1165

    CAS  PubMed  Google Scholar 

  125. Mason LH, Gosselin P, Anderson SK, Fogler WE, Ortaldo JR, McVicar DW . Differential tyrosine phosphorylation of inhibitory versus activating Ly-49 receptor proteins and their recruitment of SHP-1 phosphatase J Immunol 1997 159: 4187–4196

    CAS  PubMed  Google Scholar 

  126. Nakamura MC, Niemi EC, Fisher MJ, Shultz LD, Seaman WE, Ryan JC . Mouse Ly-49A interrupts early signaling events in natural killer cell cytotoxicity and functionally associates with the SHP-1 tyrosine phosphatase J Exp Med 1997 185: 673–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Mason LH, Ortaldo JR, Young HA, Kumar V, Bennett M, Anderson SK . Cloning and functional characteristics of murine large granular lymphocyte-1: a member of the Ly-49 gene family (Ly-49G2) J Exp Med 1995 182: 293–303

    Article  CAS  PubMed  Google Scholar 

  128. Kase A, Johansson MH, Olsson-Alheim MY, Karre K, Hoglund P . External and internal calibration of the MHC class I-specific receptor Ly49A on murine natural killer cells J Immunol 1998 161: 6133–6138

    CAS  PubMed  Google Scholar 

  129. Andersson M, Freland S, Johansson MH et al. MHC class I mosaic mice reveal insights into control of Ly49C inhibitory receptor expression in NK cells J Immunol 1998 161: 6475–6479

    CAS  PubMed  Google Scholar 

  130. Tormo J, Natarajan K, Margulies DH, Mariuzza RA . Crystal structure of a lectin-like natural killer cell receptor bound to its MHC class I ligand Nature 1999 402: 623–631

    Article  CAS  PubMed  Google Scholar 

  131. Natarajan K, Boyd LF, Schuck P, Yokoyama WM, Eliat D, Margulies DH . Interaction of the NK cell inhibitory receptor Ly49A with H-2Dd: identification of a site distinct from the TCR site Immunity 1999 11: 591–601

    Article  CAS  PubMed  Google Scholar 

  132. Lanier LL, Corliss BC, Wu J, Leong C, Phillips JH . Immunoreceptor DAP12 bearing a tyrosine-based activation motif is involved in activating NK cells Nature 1998 391: 703–707

    Article  CAS  PubMed  Google Scholar 

  133. Mason LH, Willette-Brown J, Mason AT, McVicar D, Ortaldo JR . Interaction of Ly-49D+NK cells with H-2Dd target cells leads to Dap-12 phosphorylation and IFN-gamma secretion J Immunol 2000 164: 603–611

    Article  CAS  PubMed  Google Scholar 

  134. Lanier LL, Bakker AB . The ITAM-bearing transmembrane adaptor DAP12 in lymphoid and myeloid cell function Immunol Today 2000 21: 611–614

    Article  CAS  PubMed  Google Scholar 

  135. Paloneva J, Kestila M, Wu J et al. Loss-of-function mutations in TYROBP (DAP12) result in a presenile dementia with bone cysts Nat Genet 2000 25: 357–361

    Article  CAS  PubMed  Google Scholar 

  136. Nakamura MC, Seaman WE . Ligand interactions by activating and inhibitory Ly-49 receptors Immunol Rev 2001 181: 138–148

    Article  CAS  PubMed  Google Scholar 

  137. Idris AH, Smith HR, Mason LH, Ortaldo JR, Scalzo AA, Yokoyama WM . The natural killer gene complex genetic locus Chok encodes Ly-49D, a target recognition receptor that activates natural killing Proc Natl Acad Sci USA 1999 96: 6330–6335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Ortaldo JR, Bere EW, Hodge D, Young HA . Activating Ly-49 NK receptors: central role in cytokine and chemokine production J Immunol 2001 166: 4994–4999

    Article  CAS  PubMed  Google Scholar 

  139. Karre K, Ljunggren HG, Piontek G, Kiessling R . Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy Nature 1986 319: 675–678

    Article  CAS  PubMed  Google Scholar 

  140. Farrell HE, Vally H, Lynch DM et al. Inhibition of natural killer cells by a cytomegalovirus MHC class I homologue in vivo Nature 1997 386: 510–514

    Article  CAS  PubMed  Google Scholar 

  141. Cerwenka A, Lanier LL . Natural killer cells, viruses and cancer Nat Rev 2001 1: 41–49

    CAS  Google Scholar 

  142. Alcami A, Koszinowski UH . Viral mechanisms of immune evasion Immunol Today 2000 21: 447–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Beck S, Barrell BG . Human cytomegalovirus encodes a glycoprotein homologous to MHC class-I antigens Nature 1988 331: 269–272

    Article  CAS  PubMed  Google Scholar 

  144. Fahnestock ML, Johnson JL, Feldman RM, Neveu JM, Lane WS, Bjorkman PJ . The MHC class I homolog encoded by human cytomegalovirus binds endogenous peptides Immunity 1995 3: 583–590

    Article  CAS  PubMed  Google Scholar 

  145. Leong CC, Chapman TL, Bjorkman PJ et al. Modulation of natural killer cell cytotoxicity in human cytomegalovirus infection: the role of endogenous class I major histocompatibility complex and a viral class I homolog J Exp Med 1998 187: 1681–1687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Cosman D, Fanger N, Borges L et al. A novel immunoglobulin superfamily receptor for cellular and viral MHC class I molecules Immunity 1997 7: 273–282

    Article  CAS  PubMed  Google Scholar 

  147. Yokoyama WM . Now you see it, now you don’t! Nat Immunol 2000 1: 95–97

    Article  CAS  PubMed  Google Scholar 

  148. Wu J, Song Y, Bakker AB et al. An activating immunoreceptor complex formed by NKG2D and DAP10 Science 1999 285: 730–732

    Article  CAS  PubMed  Google Scholar 

  149. Groh V, Rhinehart R, Randolph-Habecker J, Topp MS, Riddell SR, Spies T . Costimulation of CD8alphabeta T cells by NKG2D via engagement by MIC induced on virus-infected cells Nat Immunol 2001 2: 255–260

    Article  CAS  PubMed  Google Scholar 

  150. Bauer S, Groh V, Wu J et al. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA Science 1999 285: 727–729

    Article  CAS  PubMed  Google Scholar 

  151. Cosman D, Mullberg J, Sutherland CL et al. ULBPs, novel MHC class I-related molecules, bind to CMV glycoprotein UL16 and stimulate NK cytotoxicity through the NKG2D receptor Immunity 2001 14: 123–133

    Article  CAS  PubMed  Google Scholar 

  152. Cerwenka A, Bakker AB, McClanahan T et al. Retinoic acid early inducible genes define a ligand family for the activating NKG2D receptor in mice Immunity 2000 12: 721–727

    Article  CAS  PubMed  Google Scholar 

  153. Diefenbach A, Jamieson AM, Liu SD, Shastri N, Raulet DH . Ligands for the murine NKG2D receptor: expression by tumor cells and activation of NK cells and macrophages Nat Immunol 2000 1: 119–126

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Erwin Schurr from the McGill Center of Host Resistance (Montreal, Canada) for critical reading of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S M Vidal.

Additional information

This work was supported by research grants to SM Vidal from the Canadian Institute of Health Research (CIHR). SM Vidal is a scholar of CIHR. S-H Lee is supported by the CIHR Doctoral Scholarship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Webb, J., Lee, S. & Vidal, S. Genetic control of innate immune responses against cytomegalovirus: MCMV meets its match. Genes Immun 3, 250–262 (2002). https://doi.org/10.1038/sj.gene.6363876

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gene.6363876

Keywords

This article is cited by

Search

Quick links