Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structure of the hereditary haemochromatosis protein HFE complexed with transferrin receptor

Abstract

HFE is related to major histocompatibility complex (MHC) class I proteins and is mutated in the iron-overload disease hereditary haemochromatosis. HFE binds to the transferrin receptor (TfR), a receptor by which cells acquire iron-loaded transferrin. The 2.8 Å crystal structure of a complex between the extracellular portions of HFE and TfR shows two HFE molecules which grasp each side of a twofold symmetric TfR dimer. On a cell membrane containing both proteins, HFE would ‘lie down’ parallel to the membrane, such that the HFE helices that delineate the counterpart of the MHC peptide-binding groove make extensive contacts with helices in the TfR dimerization domain. The structures of TfR alone and complexed with HFE differ in their domain arrangement and dimer interfaces, providing a mechanism for communicating binding events between TfR chains. The HFE–TfR complex suggests a binding site for transferrin on TfR and sheds light upon the function of HFE in regulating iron homeostasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ribbon diagrams of HFE, TfR and HFE–TfR structures.
Figure 2: The HFE–TfR interface.
Figure 3: Stereo views of the HFE–TfR structure.
Figure 4: Conformational changes in TfR.

Similar content being viewed by others

References

  1. Andrews,N. C. & Levy,J. E. Iron is hot: An update on the pathophysiology of hemochromatosis. Blood 92, 1845–1851 (1998).

    CAS  PubMed  Google Scholar 

  2. Bacon,B. R. et al. Molecular medicine and hemochromatosis: at the crossroads. Gastroenterology 116, 193–207 (1999).

    Article  CAS  Google Scholar 

  3. Feder,J. N. et al. A novel MHC class I-like gene is mutated in patients with hereditary hemochromatosis. Nature Genet. 13, 399–408 (1996).

    Article  CAS  Google Scholar 

  4. Garcia,K. C., Teyton,L. & Wilson,I. A. Structural basis of T cell recognition. Annu. Rev. Immunol. 17, 369–397 (1999).

    Article  CAS  Google Scholar 

  5. Lebrón,J. A. et al. Crystal structure of the hemochromatosis protein HFE and characterization of its interaction with transferrin receptor. Cell 95, 111–123 (1998).

    Article  Google Scholar 

  6. Feder,J. N. et al. The hemochromatosis founder mutation in HLA-H disrupts β2-microglobulin interaction and cell surface expression. J. Biol. Chem. 272, 14025–14028 (1997).

    Article  CAS  Google Scholar 

  7. Waheed,A. et al. Hereditary hemochromatosis: effects of C282Y and H63D mutations on association with β2-microglobulin, intracellular processing, and cell surface expression of the HFE protein in COS-7 cells. Proc. Natl Acad. Sci. USA 94, 12384–12389 (1997).

    Article  ADS  CAS  Google Scholar 

  8. Feder,J. N. et al. The hemochromatosis gene product complexes with the transferrin receptor and lowers its affinity for ligand binding. Proc. Natl Acad. Sci. USA 95, 1472–1477 (1998).

    Article  ADS  CAS  Google Scholar 

  9. Parkkila,S. et al. Association of the transferrin receptor in human placenta with HFE, the protein defective in hereditary hemochromatosis. Proc. Natl Acad. Sci. USA 94, 13198–13202 (1997).

    Article  ADS  CAS  Google Scholar 

  10. Aisen,P., Wessling-Resnick,M. & Leibold,E. A. Iron metabolism. Curr. Opin. Chem. Biol. 3, 200–206 (1999).

    Article  CAS  Google Scholar 

  11. Richardson,D. R. & Ponka,P. The molecular mechanisms of the metabolism and transport of iron in normal and neoplastic cells. Biochim. Biophys. Acta 1331, 1–40 (1997).

    Article  CAS  Google Scholar 

  12. Lebrón,J. A. & Bjorkman,P. J. The transferrin receptor binding site on HFE, the Class I MHC-related protein mutated in hereditary hemochromatosis. J. Mol. Biol. 289, 1109–1118 (1999).

    Article  Google Scholar 

  13. Lebrón,J. A., West,A. P. & Bjorkman,P. J. The hemochromatosis protein HFE competes with transferrin for binding to the transferrin receptor. J. Mol. Biol. 294, 239–245 (1999).

    Article  Google Scholar 

  14. Gross,C. N., Irrinki,A., Feder,J. N. & Enns,C. A. Co-trafficking of HFE, a nonclassical major histocompatibility complex class I protein, with the transferrin receptor implies a role in intracellular iron regulation. J. Biol. Chem. 273, 22068–22074 (1998).

    Article  CAS  Google Scholar 

  15. Lawrence,C. M. et al. Structure of the ectodomain of human transferrin receptor. Science 286, 779–782 (1999).

    Article  CAS  Google Scholar 

  16. Fuchs,H. et al. Structural model of phospholipid-reconstituted human transferrin receptor derived by electron microscopy. Structure 6, 1235–1243 (1998).

    Article  CAS  Google Scholar 

  17. Creighton,T. E. Proteins: Structures and Molecular Properties (W. H. Freeman and Co., New York, 1993).

    Google Scholar 

  18. Jones,S. & Thornton,J. M. Principles of protein–protein interactions. Proc. Natl Acad. Sci. USA 93, 13–20 (1996).

    Article  ADS  CAS  Google Scholar 

  19. Wolf,E., Kim,P. S. & Berger,B. MultiCoil: A program for predicting two- and three-stranded coiled coils. Protein Sci. 6, 1179–1189 (1997).

    Article  CAS  Google Scholar 

  20. Fujinaga,M. et al. Refined crystal structure of the seryl-tRNA synthetase from Thermus thermophilus at 2.5 Angstroms resolution. J. Mol. Biol. 234, 222–233 (1993).

    Article  CAS  Google Scholar 

  21. Barton,J. C., Sawada-Hirai,R., Rothenberg,B. E. & Acton,R. T. Two novel missense mutations of the HFE gene (I105T and G93R) and identification of the S65C mutation in Alabama hemochromatosis probands. Blood Cells, Molecules, and Diseases 25, 147–155 (1999).

    Article  CAS  Google Scholar 

  22. Egan,T. J., Zak,O. & Aisen,P. The anion requirement for iron release from transferrin is preserved in the receptor–transferrin complex. Biochemistry 32, 8162–8167 (1993).

    Article  CAS  Google Scholar 

  23. Turkewitz,A. P., Schwartz,A. L. & Harrison,S. C. A pH-dependent reversible conformational transition of the human transferrin receptor leads to self-association. J. Biol. Chem. 263, 16309–16315 (1988).

    CAS  PubMed  Google Scholar 

  24. Bali,P. K., Zak,O. & Aisen,P. A new role for the transferrin receptor in the release of iron from transferrin. Biochemistry 30, 324–328 (1991).

    Article  CAS  Google Scholar 

  25. Bairoch,A. & Apweiler,R. The Swiss-Prot protein sequence data bank and its supplement TrEMBL in 1999. Nucleic Acids Res. 27, 49–54 (1999).

    Article  CAS  Google Scholar 

  26. Sipe,D. M. & Murphy,R. F. Binding to cellular receptor results in increased iron release from transferrin at mildly acidic pH. J. Biol. Chem. 266, 8002–8007 (1991).

    CAS  PubMed  Google Scholar 

  27. Buchegger,F. et al. Functional analysis of human/chicken transferrin receptor chimeras indicates that the carboxy-terminal region is important for ligand binding. Eur. J. Biochem. 235, 9–17 (1996).

    Article  CAS  Google Scholar 

  28. Dubljevic,V., Sali,A. & Goding,J. W. A conserved RGD (Arg-Gly-Asp) motif in the transferrin receptor is required for binding to transferrin. Biochem. J. 341, 11–14 (1999).

    Article  CAS  Google Scholar 

  29. Anderson,B. F. et al. Structure of human lactoferrin: crystallographic structure analysis and refinement at 2.8 Å resolution. J. Mol. Biol. 209, 711–734 (1989).

    Article  CAS  Google Scholar 

  30. Enns,C. A. & Sussman,H. H. Physical characterization of the transferrin receptor in human placentae. J. Biol. Chem. 256, 9820–9823 (1981).

    CAS  PubMed  Google Scholar 

  31. Henry,J. B. Clinical Diagnosis and Management by Laboratory Methods (W. B. Saunders Co., Philadelphia, 1991).

    Google Scholar 

  32. Roy,C. N., Penny,D. M., Feder,J. N. & Enns,C. A. The hereditary hemochromatosis protein HFE specifically regulates Tf-mediated iron uptake in HeLa cells. J. Biol. Chem. 274, 9022–9028 (1999).

    Article  CAS  Google Scholar 

  33. Parkkila,S. et al. Immunohistochemistry of HLA-H, the protein defective in patients with hereditary hemochromatosis, reveals unique pattern of expression in gastrointestinal tract. Proc. Natl Acad. Sci. USA 94, 2534–2539 (1997).

    Article  ADS  CAS  Google Scholar 

  34. Waheed,A. et al. Association of HFE protein with transferrin receptor in crypt enterocytes of human duodenum. Proc. Natl Acad. Sci. USA 96, 1579–1584 (1999).

    Article  ADS  CAS  Google Scholar 

  35. Wilson,I. A. & Bjorkman,P. J. Unusual MHC-like molecules: CD1, Fc receptor, the hemochromatosis gene product, and viral homologs. Curr. Opin. Immunol. 10, 67–73 (1998).

    Article  CAS  Google Scholar 

  36. Verland,S. et al. Specific molecular interaction between the insulin receptor and a D product of MHC class I. J. Immunol. 143, 945–951 (1989).

    CAS  PubMed  Google Scholar 

  37. Stagsted,J. et al. Regulation of insulin receptor functions by a peptide derived from a major histocompatibility complex class I antigen. Cell 62, 297–307 (1990).

    Article  CAS  Google Scholar 

  38. Otwinowski,Z. & Minor,W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  39. De La Fortelle,E. & Bricogne,G. Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. Methods Enzymol. 276, 472–494 (1997).

    Article  CAS  Google Scholar 

  40. Kleywegt,G. J. & Jones,T. A. Template convolution to enhance or detect structural features in macromolecular electron density maps. Acta Crystallogr. D 53, 179–185 (1997).

    Article  CAS  Google Scholar 

  41. Collaborative Computational Project No. 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

  42. Brünger,A. T. et al. Crystallography and NMR system: A new software system for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  Google Scholar 

  43. Kraulis,P. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  44. Merritt,E. A. & Murphy,M. E. P. Raster3D Version 2.0-a program for photorealistic molecular graphics. Acta Crystallogr. D 50, 869–873 (1994).

    Article  CAS  Google Scholar 

  45. Evans,S. V. SETOR: hardware lighted three-dimensional solid model representations of macromolecules. J. Mol. Graphics 4, 134–138 (1993).

    Article  Google Scholar 

  46. Kawabata,H. et al. Molecular cloning of transferrin receptor 2. J. Biol. Chem. 274, 20826–20832 (1999).

    Article  CAS  Google Scholar 

  47. Nicholls,A., Bharadwaj,R. & Honig,B. GRASP—graphical representation and analysis of surface properties. Biophys. J. 64, A166 (1993).

    Google Scholar 

Download references

Acknowledgements

We thank C. M. Lawrence and S. C. Harrison for sharing structural information and coordinates before publication; Z. A. Hamburger for assistance with synchrotron data collection; A. Cohen and M. Soltis for synchrotron support; P. M. Snow and I. Nangiana for expression of TfR; S. Jones for assistance with interface analyses; and A. J. Chirino, C. Enns and J. N. Feder for helpful discussions. M.J.B. was supported by a Cancer Research Institute Postdoctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pamela J. Bjorkman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bennett, M., Lebrón, J. & Bjorkman, P. Crystal structure of the hereditary haemochromatosis protein HFE complexed with transferrin receptor. Nature 403, 46–53 (2000). https://doi.org/10.1038/47417

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/47417

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing