Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Androgen decreases osteoprotegerin expression in prostate cancer cells

An Erratum to this article was published on 13 May 2008

Abstract

Osteoprotegerin (OPG), a key regulator of bone resorption, is hypothesized to have a role in prostate cancer (CaP) bone metastasis. As advanced CaP is treated by androgen ablation, we examined if androgen modulates OPG expression by CaP cell lines in vitro. Basal levels of secreted OPG protein were significantly greater in androgen-independent PC-3 cells compared with androgen-responsive LNCaP-FGC cells (P<0.001); OPG was not detected in the androgen-responsive CaP cell lines LAPC-4 or DuCaP. Treatment with 5α-dihydrotestosterone (5α-DHT) significantly decreased OPG protein levels in both PC-3 and LNCaP-FGC, with maximal suppression using 10−9–10−7M 5α-DHT in PC-3 (P<0.01; day 3), and using 10−10–10−9M 5α-DHT in LNCaP-FGC cells (P<0.01; day 6). OPG messenger RNA levels were not significantly altered by this 5α-DHT treatment. Co-treatment with 10−6M flutamide blocked 5α-DHT inhibition of OPG protein expression in LNCaP-FGC cells. These data suggest that androgen may modulate OPG protein levels in CaP cells lines in vitro using a post-transcriptional mechanism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Carlin BI, Andriole GL . The natural history, skeletal complications, and management of bone metastases in patients with prostate carcinoma. Cancer 2000; 88: 2989–2994.

    Article  CAS  Google Scholar 

  2. McMurtry CT, McMurtry JM . Metastatic prostate cancer: complications and treatment. J Am Geriatr Soc 2003; 51: 1136–1142.

    Article  Google Scholar 

  3. Morony S, Capparelli C, Sarosi I, Lacey DL, Dunstan CR, Kostenuik PJ . Osteoprotegerin inhibits osteolysis and decreases skeletal tumor burden in syngeneic and nude mouse models of experimental bone metastasis. Cancer Res 2001; 61: 4432–4436.

    CAS  Google Scholar 

  4. Penno H, Silfverswärd C-J, Frosta A, Brändström H, Nilsson O, Ljunggren Ö . Osteoprotegerin secretion from prostate cancer is stimulated by cytokines, in vitro. Biochem Biophys Res Commun 2002; 293: 451–455.

    Article  CAS  Google Scholar 

  5. Pollen JJ, Reznek RH, Talner LB . Lysis of osteoblastic lesions in prostatic cancer: a sign of progression. AJR Am J Roentgenol 1984; 142: 1175–1179.

    Article  CAS  Google Scholar 

  6. Zhang J, Dai J, Qi Y, Lin DL, Smith P, Strayhorn C et al. Osteoprotegerin inhibits prostate cancer-induced osteoclastogenesis and prevents prostate tumor growth in the bone. J Clin Invest 2001; 107: 1235–1244.

    Article  CAS  Google Scholar 

  7. Balk SP . Androgen receptor as a target in androgen-independent prostate cancer. Urology 2002; 60: 132–138.

    Article  Google Scholar 

  8. Hara T, Miyazaki J, Araki H, Yamaoka M, Kanzaki N, Kusaka M et al. Novel mutations of androgen receptor: a possible mechanism of bicalutamide withdrawal syndrome. Cancer Res 2003; 63: 149–153.

    CAS  Google Scholar 

  9. Orwoll ES, Klein RF . Osteoporosis in men. Endocr Rev 1995; 16: 87–116.

    Article  CAS  Google Scholar 

  10. Syed F, Khosla S . Mechanisms of sex steroid effects on bone. Biochem Biophys Res Commun 2005; 328: 688–696.

    Article  CAS  Google Scholar 

  11. Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Lüthy R et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 1997; 89: 309–319.

    Article  CAS  Google Scholar 

  12. Yasuda H, Shima N, Nakagawa N, Mochizuki SI, Yano N, Fujise K et al. Identity of osteoclastogenesis inhibitory factor (OCIF) and osteoprotegerin (OPG): a mechanism by which OPG/OCIF inhibits osteoclastogenesis in vitro. Endocrinology 1998; 139: 1329–1337.

    Article  Google Scholar 

  13. Lacey D, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 1998; 93: 165–176.

    Article  CAS  Google Scholar 

  14. Brown JM, Corey E, Lee ZD, True LD, Yun TJ, Tondravi M et al. Osteoprotegerin and RANK ligand expression in prostate cancer. Urology 2001; 57: 611–616.

    Article  CAS  Google Scholar 

  15. Brown JM, Vessella RL, Kostenuik PJ, Dunstan CR, Lange PH, Corey E . Serum osteoprotegerin levels are increased in patients with advanced prostate cancer. Clin Cancer Res 2001; 7: 2977–2983.

    CAS  Google Scholar 

  16. Jung K, Lein M, von Hösslin K, Brux B, Schnorr D, Loening SA et al. Osteoprotegerin in serum as a novel marker of bone metastatic spread in prostate cancer. Clin Chem 2001; 47: 2061–2063.

    CAS  Google Scholar 

  17. Jung K, Stephan C, Semjonow A, Lein M, Schnorr D, Loening SA . Serum osteoprotegerin and receptor activator of nuclear factor-κB ligand as indicators of disturbed osteoclastogenesis in patients with prostate cancer. J Urol 2003; 170: 2302–2305.

    Article  Google Scholar 

  18. Eaton CL, Wells JM, Holen I, Croucher PI, Hamdy FC . Serum osteoprotegerin (OPG) levels are associated with disease progression and response to androgen ablation in patients with prostate cancer. Prostate 2004; 59: 304–310.

    Article  CAS  Google Scholar 

  19. Holen I, Croucher PI, Hamdy FC, Eaton CL . Osteoprotegerin (OPG) is a survival factor for human prostate cancer cells. Cancer Res 2002; 62: 1619–1623.

    CAS  Google Scholar 

  20. Hofbauer LC, Hicok KC, Chen D, Khosla S . Regulation of osteoprotegerin production by androgens and anti-androgens in human osteoblastic lineage cells. Eur J Endocrinol 2002; 147: 269–273.

    Article  CAS  Google Scholar 

  21. Berthois Y, Katzenellenbogen JA, Katzenellenbogen BS . Phenol red in tissue culture media is a weak estrogen: implications concerning the study of estrogen-responsive cells in culture. Proc Natl Acad Sci USA 1986; 83: 2496–2500.

    Article  CAS  Google Scholar 

  22. Buchanan G, Craft PS, Yang M, Cheong A, Prescott J, Jia L et al. PC-3 cells with enhanced androgen receptor signaling: a model for clonal selection in prostate cancer. Prostate 2004; 60: 352–366.

    Article  CAS  Google Scholar 

  23. Marreiros A, Czolij R, Yardley G, Crossley M, Jackson P . Identification of regulatory regions within the KAI1 promoter: a role for binding of AP1, AP2 and p53. Gene 2003; 302: 155–164.

    Article  CAS  Google Scholar 

  24. Tilley WD, Bentel JM, Aspinall JO, Hall RE, Horsfall DJ . Evidence for a novel mechanism of androgen resistance in the human prostate cancer cell line, PC-3. Steroids 1995; 60: 180–186.

    Article  CAS  Google Scholar 

  25. Lin MF, Meng TC, Rao PC, Chang C, Schönthal AH, Lin FF . Expression of human prostatic acid phosphatase correlates with androgen-stimulated cell proliferation in prostate cancer cell lines. J Biol Chem 1998; 273: 5939–5947.

    Article  CAS  Google Scholar 

  26. Alimirah F, Chen J, Basrawala Z, Xin H, Choubey D . DU-145 and PC-3 human prostate cancer cell lines express androgen receptor: implications for the androgen receptor functions and regulation. FEBS Lett 2006; 580: 2294–2300.

    Article  CAS  Google Scholar 

  27. Yuan S, Trachtenberg J, Mills GB, Brown TJ, Xu F, Keating A . Androgen-induced inhibition of cell proliferation in an androgen-insensitive prostate cancer cell line (PC-3) transfected with a human androgen receptor complementary DNA. Cancer Res 1993; 53: 1304–1311.

    CAS  Google Scholar 

  28. Garcia-Arenas R, Lin F-F, Lin D, Jin LP, Shih CC, Chang C et al. The expression of prostatic acid phosphatase is transcriptionally regulated in human prostate carcinoma cells. Mol Cell Endocrinol 1995; 111: 29–37.

    Article  CAS  Google Scholar 

  29. Benten WP, Lieberherr M, Sekeris CE, Wunderlich F . Testosterone induces Ca2+ influx via non-genomic surface receptors in activated T cells. FEBS Lett 1997; 407: 211–214.

    Article  CAS  Google Scholar 

  30. Wehling M . Specific, nongenomic actions of steroid hormones. Annu Rev Physiol 1997; 59: 365–393.

    Article  CAS  Google Scholar 

  31. Nadal A, Rovira JM, Laribi O, Leon-quinto T, Andreu E, Ripoll C et al. Rapid insulinotropic effect of 17β-estradiol via a plasma membrane receptor. FASEB J 1998; 12: 1341–1348.

    Article  CAS  Google Scholar 

  32. Benten WP, Lieberherr M, Stamm O, Wrehlke C, Guo Z, Wunderlich F . Testosterone signaling through internalizable surface receptors in androgen receptor-free macrophages. Mol Biol Cell 1999; 10: 3113–3123.

    Article  CAS  Google Scholar 

  33. Lyng FM, Jones GR, Rommerts FF . Rapid androgen actions on calcium signaling in rat sertoli cells and two human prostatic cell lines: similar biphasic responses between 1 picomolar and 100 nanomolar concentrations. Biol Reprod 2000; 63: 736–747.

    Article  CAS  Google Scholar 

  34. Papakonstanti EA, Kampa M, Castanas E, Stournaras C . A rapid, nongenomic, signaling pathway regulates the actin reorganization induced by activation of membrane testosterone receptors. Mol Endocrinol 2003; 17: 870–881.

    Article  CAS  Google Scholar 

  35. Steinsapir J, Socci R, Reinach P . Effects of androgen on intracellular calcium of LNCaP cells. Biochem Biophys Res Commun 1991; 179: 90–96.

    Article  CAS  Google Scholar 

  36. Kampa M, Papakonstanti EA, Alexaki VI, Hatzoglou A, Stournaras C, Castanas E . The opioid agonist ethylketocyclazocine reverts the rapid, non-genomic effects of membrane testosterone receptors in the human prostate LNCaP cell line. Exp Cell Res 2004; 294: 434–445.

    Article  CAS  Google Scholar 

  37. Bellido T, Jilka RL, Boyce BF, Girasole G, Broxmeyer H, Dalrymple S et al. Regulation of interleukin-6, osteoclastogenesis, and bone mass by androgens. The role of the androgen receptor. J Clin Invest 1995; 95: 2886–2895.

    Article  CAS  Google Scholar 

  38. Hofbauer LC, Khosla S . Androgen effects on bone metabolism: recent progress and controversies. Eur J Endocrinol 1999; 140: 271–286.

    Article  CAS  Google Scholar 

  39. Pederson L, Kremer M, Judd J, Pascoe D, Spelsberg TC, Riggs BL et al. Androgens regulate bone resorption activity of isolated osteoclasts in vitro. Proc Natl Acad Sci USA 1999; 96: 505–510.

    Article  CAS  Google Scholar 

  40. Gennari L, Nuti R, Bilezikian JP . Aromatase activity and bone homeostasis in men. J Clin Endocrinol Metab 2004; 89: 5898–5907.

    Article  CAS  Google Scholar 

  41. Wittrant Y, Théoleyre S, Chipoy C, Padines M, Blanchard F, Heymann D et al. RANKL/RANK/OPG: new therapeutic targets in bone tumours and associated osteolysis. Biochim Biophys Acta 2004; 1704: 49–57.

    CAS  Google Scholar 

  42. Blair JM, Zhou H, Seibel MJ, Dunstan CR . Mechanisms of disease: roles of OPG, RANKL and RANK in the pathophysiology of skeletal metastasis. Nat Clin Pract Oncol 2006; 3: 41–49.

    Article  CAS  Google Scholar 

  43. Grimaud E, Soubigou L, Couillaud S, Coipeau P, Moreau A, Passuti N et al. Receptor activator of nuclear factor κB ligand (RANKL)/osteoprotegerin (OPG) ratio is increased in severe osteolysis. Am J Pathol 2003; 163: 2021–2031.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Barbara Szymanska and Elizabeth Kingsley for their excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J M Blair.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vandyke, K., Jackson, P., Rowe, A. et al. Androgen decreases osteoprotegerin expression in prostate cancer cells. Prostate Cancer Prostatic Dis 10, 160–166 (2007). https://doi.org/10.1038/sj.pcan.4500927

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.pcan.4500927

Keywords

Search

Quick links