Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Wetting properties

When larger drops evaporate faster

Abstract

In an ensemble of volatile liquid drops, either in suspension or on a partially wetted substrate, large drops grow at the expense of smaller ones when the pressure is just above the saturated-vapour pressure. Below this critical pressure, all drops evaporate, with the smallest drops evaporating fastest. But an array of water drops of different sizes on a mica substrate cleaved in a vacuum behave differently: below the equilibrium vapour pressure, the largest drops evaporate fastest and the smallest ones more slowly. Here we show that this behaviour is related to the coexistence of thick and thin water films during evaporation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Behaviour of evaporating water drops on a cleaved mica substrate.

Similar content being viewed by others

References

  1. Cazabat, A.-M Contemp. Phys. 28, 347–364 (1987).

    Article  ADS  CAS  Google Scholar 

  2. Brochard-Wyart, F. Soft Matter Physics 7–44 (Springer, Berlin, 1995).

    Google Scholar 

  3. Sharma, A. & Jameel, A. J. Colloid Interface Sci. 161, 190–208 (1993).

    Article  ADS  CAS  Google Scholar 

  4. Samid-Merzel, N., Lipson, S. G. & Tanhauser, D. S. Phys. Rev. E 57, 2906–2913 (1998).

    Article  ADS  CAS  Google Scholar 

  5. de Gennes, P. G. Rev. Mod. Phys. 57, 325–359 (1985).

    Article  Google Scholar 

  6. Israelachvili, J. Intermolecular and Surface Forces 2nd edn (Academic, San Diego, 1992).

    Google Scholar 

  7. Ben-Jacob, E. Nature 343, 523–530 (1990).

    Article  ADS  Google Scholar 

  8. Ihle, T. & Muller Krumbhaar, H. Phys. Rev. Lett. 70, 3083–3086 (1993).

    Article  ADS  CAS  Google Scholar 

  9. McHale, G., Rowan, S. M., Newton, M. I. & Banerjee, M. K. J. Phys. Chem. B 102, 1964–1967 (1998).

    Article  CAS  Google Scholar 

  10. Schafle, C., Bechinger, C., Rinn, B., David, C. & Leider, P. Phys. Rev. Lett. 83, 5302–5305 (1999).

    Article  ADS  CAS  Google Scholar 

  11. Elbaum, M. & Lipson, S. G. Phys. Rev. Lett. 72, 3562–3565 (1994).

    Article  ADS  CAS  Google Scholar 

  12. Sharma, A. Langmuir 9, 3580–3586 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Leizerson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leizerson, I., Lipson, S. & Lyushnin, A. When larger drops evaporate faster. Nature 422, 395–396 (2003). https://doi.org/10.1038/422395b

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/422395b

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing