Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Adult mice with reduced Nurr1 expression: an animal model for schizophrenia

Abstract

The transcription factor Nurr1 (NR4A2) has been found to play a critical role in the development of midbrain dopaminergic neurons. Nurr1 heterozygous (+/−) male and female mice expressing 35–40% of normal levels of Nurr1 were generated and examined in animal models related to symptoms of schizophrenia. The Nurr1 (+/−) mice displayed hyperactivity in a novel environment, which persisted after administration of the dopamine-mimetic amphetamine and the N-methyl-D-aspartate receptor antagonist phencyclidine. The Nurr1 (+/−) mice were deficient in the retention of emotional memory and showed an enhanced response to swim stress. In addition, Nurr1 (+/−) male mice displayed a reduced dopamine turnover in the striatum and an enhanced dopamine turnover in the prefrontal cortex, while female mice showed an opposite pattern. These results show that Nurr1 (+/−) mice display a pattern of behaviors indicative of potential relevance for symptoms of schizophrenia combined with a gender-specific abnormal dopamine transmission in the striatum and prefrontal cortex, respectively. This suggests that the Nurr1 mutant mouse may be a potential animal model for studies on some of the behavioral and molecular mechanisms underlying schizophrenia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Ban TA, Guy W, Wilson WH . Description and distribution of the subtypes of chronic schizophrenia based on Leonhard's classification. Psychiatr Dev 1984; 2: 179–199.

    CAS  PubMed  Google Scholar 

  2. Carlsson A . The dopamine theory revisited. In: Hirsch SR, Weinberger DR (ed). Schizophrenia. Blackwell Science: Oxford, 1995, pp 379–400.

    Google Scholar 

  3. Creese I, Burt DR, Snyder SH . Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science 1976; 192: 481–483.

    Article  CAS  Google Scholar 

  4. Seeman P, Lee T, Chau-Wong M, Wong K . Antipsychotic drug doses and neuroleptic/dopamine receptors. Nature 1976; 261: 717–719.

    Article  CAS  Google Scholar 

  5. Griffith JD, Cavanaugh J, Held J, Oates JA . Dextroamphetamine: evaluation of psychotomimetic properties in man. Arch Gen Psychiatry 1972; 26: 97–100.

    Article  CAS  Google Scholar 

  6. Gerfen CR . The neostriatal mosaic: multiple levels of compartmental organization in the basal ganglia. Annu Rev Neurosci 1992; 15: 285–320.

    Article  CAS  Google Scholar 

  7. LeMoal M, Simon H . Mesocorticolimbic dopaminergic network: functional and regulatory roles. Physiol Rev 1991; 71: 155–234.

    Article  CAS  Google Scholar 

  8. Leung HC, Seelig D, Gore JC . The effect of memory load on cortical activity in the spatial working memory circuit. Cogn Affect Behav Neurosci 2004; 4: 553–563.

    Article  Google Scholar 

  9. Konradi C, Heckers S . Molecular aspects of glutamate dysregulation: implications for schizophrenia and its treatment. Pharmacol Ther 2003; 17: 153–179.

    Article  Google Scholar 

  10. Carlsson A, Waters N, Holm-Waters S, Tedroff J, Nilsson M, Carlsson ML . Interactions between monoamines, glutamate, and GABA in schizophrenia: new evidence. Annu Rev Pharmacol Toxicol 2001; 41: 237–260.

    Article  CAS  Google Scholar 

  11. Krystal JH, Anand A, Moghaddam B . Effects of NMDA receptor antagonists: implications for the pathophysiology of schizophrenia. Arch Gen Psychiatry 2002; 59: 663–664.

    Article  Google Scholar 

  12. Javitt DC, Zukin SR . Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry 1991; 148: 1301–1308.

    Article  CAS  Google Scholar 

  13. Morris BJ, Cochran SM, Pratt JA . PCP: from pharmacology to modelling schizophrenia. Curr Opin Pharmacol 2005; 5: 101–106.

    Article  CAS  Google Scholar 

  14. Ögren SO . The behavioral pharmacology of typical and atypical antipsychotic drugs. In: Csernansky JG (ed). The Handbook of Experimental Pharmacology: Antipsychotics, vol. 120. Springer Verlag: Heidelberg, 1996, pp 225–244.

    Google Scholar 

  15. Weinberger DR, Manreco S . Schizophrenia as a neurodevelopmental disorder. In: Hirsch SR, Weinberger DR (eds). Schizophrenia. Blackwell: Oxford, 2003, pp 326–348.

    Chapter  Google Scholar 

  16. Zetterström RH, Solomin L, Jansson L, Hoffer BJ, Olson L, Perlmann T . Dopamine neurons agenesis in Nurr1-deficient mice. Science 1997; 276: 248–250.

    Article  Google Scholar 

  17. Castillo SO, Baffi JS, Oalkovits M, Goldstein DS, Kopin IJ, Witta J et al. Dopamine biosynthesis is selectively abolished in substantia nigra/ventral tegmental area but not in hypothalamic neurons in mice with targeted disruption of the Nurr1 gene. Mol Cell Neurosci 1998; 11: 36–46.

    Article  CAS  Google Scholar 

  18. Saucedo-Cárdenas O, Quintana-Hau JD, Le WD, Smidt MP, Cox JJ, De Mayo F et al. Nurr1 is essential for the induction of the dopaminergic phenotype and the survival of ventral mesencephalic late dopaminergic precursor neurons. Proc Natl Acad Sci USA 1998; 95: 4013–4018.

    Article  Google Scholar 

  19. Sakurada K, Ohshima-Sakurada M, Palmer TD, Gage FH . Nurr1, an orphan nuclear receptor, is a transcriptional activator of endogenous tyrosine hydroxylase in neural progenitor cells derived from the adult brain. Development 1999; 126: 4017–4026.

    CAS  PubMed  Google Scholar 

  20. Sacchetti P, Mitchell TR, Granneman JG, Bannon MJ . Nurr1 enhances transcription of the human dopamine transporter gene through a novel mechanism. J Neurochem 2001; 76: 1565–1572.

    Article  CAS  Google Scholar 

  21. Bäckman C, Perlmann T, Wallen A, Hoffer RJ, Morales M . A selective group of dopaminergic neurons express Nurr1 in the adult mouse brain. Brain Res 1999; 851: 125–137.

    Article  Google Scholar 

  22. Buervenich S, Carmine A, Arvidsson M, Xiang F, Zhang Z, Sydow O et al. Nurr1 mutations in cases of schizophrenia and manic-depressive disorder. Am J Med Genet (Neuropsychiatric Genet) 2000; 96: 808–813.

    Article  CAS  Google Scholar 

  23. Xing G, Zhang L, Russell S, Post R . Reduction of dopamine-related transcription factors Nurr1 and NGFI-B in the prefrontal cortex in schizophrenia and bipolar disorders. Schizophr Res 2006; 84: 36–56.

    Article  Google Scholar 

  24. Eells JB, Lipska BK, Yeung SK, Misler JA, Nikodem VM . Nurr1-null heterozygous mice have reduced mesolimbic and mesocortical dopamine levels and increased stress-induced locomotor activity. Behav Brain Res 2002; 136: 267–275.

    Article  CAS  Google Scholar 

  25. Ögren SO, Hall H, Kohler C, Magnusson O, Sjostrand SE . The selective dopamine D2 receptor antagonist raclopride discriminates between dopamine-mediated motor functions. Psychopharmacology (Berl) 1986; 90: 287–294.

    Article  Google Scholar 

  26. Misane I, Ögren SO . Multiple 5-HT receptors in passive avoidance: comparative studies of p-chloroamphetamine and 8-OH-DPAT. Neuropsychopharmacology 2000; 22: 168–190.

    Article  CAS  Google Scholar 

  27. Kuteeva E, Hökfelt T, Ögren SO . Behavioural characterisation of young adult transgenic mice overexpressing galanin under the PDGF-B promoter. Regul Pept 2005; 125: 67–78.

    Article  CAS  Google Scholar 

  28. Larsson L-G, Rényi L, Ross SB, Svensson B, Ängeby-Möller K . Different effects on the responses of functional pre- and postsynaptic 5-HT1A receptors by repeated treatment of rats with the 5-HT1A receptor agonist 8-OH-DPAT. Neuropharmacology 1990; 29: 85–91.

    Article  CAS  Google Scholar 

  29. Richelson E . Receptor pharmacology of neuroleptics: relation to clinical effects. J Clin Psychiatry 1999; 60 (Suppl 10): 5–14.

    CAS  PubMed  Google Scholar 

  30. Gainetdinov RR, Mohn AR, Caron MG . Genetic animal models: focus on schizophrenia. Trends Neurosci 2001; 24: 527–533.

    Article  CAS  Google Scholar 

  31. Giros B, Javer M, Jones SR, Wightmann RM, Caron MG . Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature 1996; 379: 606–612.

    Article  CAS  Google Scholar 

  32. Schotte A, Janssen PF, Megens AA, Leysen JE . Occupancy of central neurotransmitter receptors by risperidone, clozapine and haloperidol, measured ex vivo by quantitative autoradiography. Brain Res 1993; 631: 191–202.

    Article  CAS  Google Scholar 

  33. Mohn AR, Gainetdinov RR, Caron MG, Koller BH . Mice with reduced NMDA receptor expression display behaviors related to schizophrenia. Cell 1999; 98: 427–436.

    Article  CAS  Google Scholar 

  34. Hafner H . Gender differences in schizophrenia. Psychoneuroendocrinology 2003; 2: 17–54.

    Article  Google Scholar 

  35. Ivanova T, Beyer C . Estrogen regulates tyrosine hydroxylase expression in the neonate mouse midbrain. J Neurobiol 2003; 54: 638–647.

    Article  CAS  Google Scholar 

  36. Lahti RA, Roberts RC, Conley RR, Cochrane EV, Mutin A, Tamminga CA . D2-type dopamine receptors in postmortem human brain sections from normal and schizophrenic subjects. Neuroreport 1996; 7: 1945–1948.

    Article  CAS  Google Scholar 

  37. Lindstrom LH, Gefvert O, Hagberg G, Lundberg T, Bergstrom M, Hartvig P et al. Increased dopamine synthesis rate in medial prefrontal cortex and striatum in schizophrenia indicated by L-(beta-11C) DOPA and PET. Biol Psychiatry 1999; 46: 681–688.

    Article  CAS  Google Scholar 

  38. Goldman-Rakic PS, Castner SA, Svensson TH, Siever LJ, Williams GV . Targeting the dopamine D1 receptor in schizophrenia: insights for cognitive dysfunction. Psychopharmacology (Berl) 2004; 174: 3–16.

    Article  CAS  Google Scholar 

  39. Exner C, Boucsein K, Degner D, Irle E, Weniger G . Impaired emotional learning and reduced amygdala size in schizophrenia: a 3-month follow-up. Schizophr Res 2004; 71: 493–503.

    Article  Google Scholar 

  40. Silver H, Shlomo N . Perception of facial emotions in chronic schizophrenia does not correlate with negative symptoms but correlates with cognitive and motor dysfunction. Schizophr Res 2001; 52: 265–273.

    Article  CAS  Google Scholar 

  41. Phillips R, LeDoux JE . Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav Neurosci 1992; 106: 274–285.

    Article  CAS  Google Scholar 

  42. Stiedl O, Misane I, Spiess J, Ogren SO . Involvement of the 5-HT1A receptors in classical fear conditioning in C57BL/6J mice. J Neurosci 2000; 20: 8515–8527.

    Article  CAS  Google Scholar 

  43. Juckel G, Gallinat J, Riedel M, Sokullu S, Schulz C, Moller HJ et al. Serotonergic dysfunction in schizophrenia assessed by the loudness dependence measure of primary auditory cortex evoked activity. Schizophr Res 2003; 64: 115–124.

    Article  Google Scholar 

  44. Luttgen M, Elvander E, Madjid N, Ögren SO . Analysis of the role of 5-HT1A receptors in spatial and aversive learning in the rat. Neuropharmacology 2005; 48: 830–852.

    Article  Google Scholar 

  45. Nicholson IR, Neufeld RW . A dynamic vulnerability perspective on stress and schizophrenia. Am J Orthopsychiatry 1992; 62: 117–130.

    Article  CAS  Google Scholar 

  46. Crispino M, Tocco G, Feldman JD, Herscham HR, Baudry M . Nurr1 mRNA expression in neonatal and adult rat brain following kainic acid-induced seizure activity. Brain Res Mol Brain Res 1998; 59: 178–188.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Norma Serrano and Nather Majid for technical assistance. This study was partially supported by Göran Gustafsson Foundation, Research funds of Karolinska Institute, Swedish Foundation for Strategic Research, The Swedish Research Council and Wallenberg Consortium North.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S O Ögren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rojas, P., Joodmardi, E., Hong, Y. et al. Adult mice with reduced Nurr1 expression: an animal model for schizophrenia. Mol Psychiatry 12, 756–766 (2007). https://doi.org/10.1038/sj.mp.4001993

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001993

Keywords

This article is cited by

Search

Quick links