Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Research Article
  • Published:

Single nucleotide polymorphisms distinguish multiple dopamine transporter alleles in primates: implications for association with attention deficit hyperactivity disorder and other neuropsychiatric disorders

Abstract

the human dopamine transporter (dat) gene contains a variable number tandem repeat (vntr; 40 bases/3 to >11 repeats) in the 3′-untranslated region (3′-UTR), resulting in multiple alleles categorized by length. The 10-copy allele has been associated with attention deficit hyperactivity disorder (ADHD), yet it accounts for only a small proportion of symptom variance. We investigated whether the rhesus monkey DAT gene contains a repeat sequence similar to the human and whether this region differs in the five most hyperactive and the five most sedate animals selected from a behaviorally characterized cohort (n = 22). A fixed number tandem repeat (FNTR; 39 bases/12 repeats) was observed in all animals. Accordingly, this FNTR is unbefitting an association of DAT transcript length with hyperactivity. However, sequence analysis revealed potential single nucleotide polymorphisms (SNPs), one of which affects a Bst1107I restriction site. We screened the entire cohort, confirmed that all the rhesus monkeys had repeat regions of the same length, and demonstrated that digestion with Bst1107I was sufficient to distinguish two distinct FNTR alleles. Bst1107I genotype was suggestive but not predictive of hyperactive behavior. Based on these data, we speculated that SNPs may exist in human DAT VNTR alleles. To support this hypothesis, we cloned a portion of a novel 10-repeat allele from the human gene containing an SNP that abolishes a DraI restriction site. We conclude that SNPs create a diversity of DAT alleles between individuals that may be greater than previously identified based solely on the length of the VNTR region, and that alleles of specific sequence may contribute to dopamine-related disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Coyle JT, Snyder SH . Catecholamine uptake by synaptosomes in homogenates of rat brain: stereospecificity in different areas J Pharmacol Exp Ther 1969 170: 221–231

    CAS  PubMed  Google Scholar 

  2. Giros B, Jaber M, Jones SR, Wightman RM, Caron MG . Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter Nature 1996 379: 606–612

    Article  CAS  Google Scholar 

  3. Kawarai T, Kawakami H, Yamamura Y, Nakamura S . Structure and organization of the gene encoding human dopamine transporter Gene 1997 195: 11–18

    Article  CAS  Google Scholar 

  4. Vandenbergh DJ, Persico AM, Hawkins AL, Griffin CA, Li X, Jabs EW et al. Human dopamine transporter gene (DAT1) maps to chromosome 5p15.3 and displays a VNTR Genomics 1992 14: 1104–1106

    Article  CAS  Google Scholar 

  5. Sano A, Kondoh K, Kakimoto Y, Kondo I . A 40-nucleotide repeat polymorphism in the human dopamine transporter gene Hum Genet 1993 91: 405–406

    Article  CAS  Google Scholar 

  6. Kang AM, Palmatier MA, Kidd KK . Global variation of a 40-bp VNTR in the 3′-untranslated region of the dopamine transporter gene (SLC6A3) Biol Psychiatry 1999 46: 151–160

    Article  CAS  Google Scholar 

  7. Higuchi S, Muramatsu T, Arai H, Hayashida M, Sasaki H, Trojanowski JQ . Polymorphisms of dopamine receptor and transporter genes and Parkinson's disease J Neural Transm Park Dis Dement Sect 1995 10: 107–113

    Article  CAS  Google Scholar 

  8. Le Couteur DG, Leighton PW, McCann SJ, Pond S . Association of a polymorphism in the dopamine-transporter gene with Parkinson's disease Mov Disord 1997 12: 760–763

    Article  CAS  Google Scholar 

  9. Mercier G, Turpin JC, Lucotte G . Variable number tandem repeat dopamine transporter gene polymorphism and Parkinson's disease: no association found J Neurol 1999 246: 45–47

    Article  CAS  Google Scholar 

  10. Inada T, Sugita T, Dobashi I, Inagaki A, Kitao Y, Matsuda G et al. Dopamine transporter gene polymorphism and psychiatric symptoms seen in schizophrenic patients at their first episode Am J Med Genet 1996 67: 406–408

    Article  CAS  Google Scholar 

  11. Persico AM, Macciardi F . Genotypic association between dopamine transporter gene polymorphisms and schizophrenia Am J Med Genet 1999 74: 53–57

    Article  Google Scholar 

  12. Persico AM, Catalano M . Lack of association between dopamine transporter gene polymorphisms and delusional disorder Am J Med Genet 1998 81: 163–165

    Article  CAS  Google Scholar 

  13. Sabol SV, Nelson ML, Fisher C, Gunzerath L, Brody CL, Hu S et al. A genetic association for cigarette smoking behavior Health Psychol 1999 18: 7–13

    Article  CAS  Google Scholar 

  14. Persico AM, Vandenbergh DJ, Smith SS, Uhl GR . Dopamine transporter gene polymorphisms are not associated with polysubstance abuse Biol Psychiatry 1993 34: 265–267

    Article  CAS  Google Scholar 

  15. Parsian A, Zhang ZH . Human dopamine transporter gene polymorphism (VNTR) and alcoholism Am J Med Genet 1997 74: 480–482

    Article  CAS  Google Scholar 

  16. Ueno S, Nakamura M, Mikami M, Kondoh K, Ishiguro H, Arinami T et al. Identification of a novel polymorphism of the human dopamine transporter (DAT1) gene and the significant association with alcoholism Mol Psychiatry 1999 4: 552–557

    Article  CAS  Google Scholar 

  17. Cook EH, Jr ., Stein MA, Krasowski MD, Cox NJ, Olkon DM, Kieffer JE et al. Association of attention-deficit disorder and the dopamine transporter gene Am J Hum Genet 1995 56: 993–998

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Gill M, Daly G, Heron S, Hawi Z, Fitzgerald M . Confirmation of association between attention deficit hyperactivity disorder and a dopamine transporter polymorphism Mol Psychiatry 1997 2: 311–313

    Article  CAS  Google Scholar 

  19. Waldman ID, Rowe DC, Abramowitz A, Kozel ST, Mohr JH, Sherman SL et al. Association and linkage of the dopamine transporter gene and attention-deficit hyperactivity disorder in children: heterogeneity owing to diagnostic subtype and severity Am J Hum Genet 1998 63: 1767–1776

    Article  CAS  Google Scholar 

  20. Daly G, Hawi Z, Fitzgerald M, Gill M . Mapping susceptibility loci in attention deficit hyperactivity disorder: preferential transmission of parental alleles at DAT1, DBH and DRD5 to affected children Mol Psychiatry 1999 4: 192–196

    Article  CAS  Google Scholar 

  21. Winsberg BG, Comings DE . Association of the dopamine transporter gene (DAT1) with poor methylphenidate response J Am Acad Child Adolesc Psychiatry 1999 38: 1474–1477

    Article  CAS  Google Scholar 

  22. Lewczyk CM, Fernandez T, Castellanos FX, Koprivica V, Kashani A, Tayebi N et al. Lack of association between dopamine transporter (DAT1) and ADHD Biol Psychiatry 1999 45: 845

    Google Scholar 

  23. Volkow ND, Wang GJ, Fowler JS, Gatley SJ, Logan J, Ding YS et al. Dopamine transporter occupancies in the human brain induced by therapeutic doses of oral methylphenidate Am J Psychiatry 1998 155: 1325–1331

    Article  CAS  Google Scholar 

  24. Seeman P, Madras BK . Anti-hyperactivity medication: methylphenidate and amphetamine Mol Psychiatry 1998 3: 386–396

    Article  CAS  Google Scholar 

  25. Dougherty DD, Bonab AA, Spencer TJ, Rauch SL, Madras BK, Fischman AJ . Dopamine transporter density in patients with attention deficit hyperactivity disorder [letter] Lancet 1999 354: 2132–2133

    Article  CAS  Google Scholar 

  26. Sagvolden T, Pettersen MB, Larsen MC . Spontaneously hypertensive rats (SHR) as a putative animal model of childhood hyperkinesis: SHR behavior compared to four other rat strains Physiol Behav 1993 54: 1047–1055

    Article  CAS  Google Scholar 

  27. Russell V, de Villiers A, Sagvolden T, Lamm M, Taljaard J . Altered dopaminergic function in the prefrontal cortex, nucleus accumbens and caudate-putamen of an animal model of attention-deficit hyperactivity disorder—the spontaneously hypertensive rat Brain Res 1995 676: 343–351

    Article  CAS  Google Scholar 

  28. King JA, Barkley RA, Delville Y, Ferris CF . Early androgen treatment decreases cognitive function and catecholamine innervation in an animal model of ADHD Behav Brain Res 2000 107: 35–43

    Article  CAS  Google Scholar 

  29. Fujiwara Y, Yamaguchi K, Tanaka Y, Tomita H, Shiro Y, Kashihara K et al. Polymorphism of dopamine receptors and transporter genes in neuropsychiatric diseases Eur Neurol 1997 38 Suppl 1: 6–10

    Article  CAS  Google Scholar 

  30. Biederman J . Attention-deficit/hyperactivity disorder: a life-span perspective J Clin Psychiatry 1998 59 Suppl 7: 4–16

    CAS  PubMed  Google Scholar 

  31. Castellanos FX . Toward a pathophysiology of attention-deficit/hyperactivity disorder Clin Pediatr (Phila) 1997 36: 381–393

    Article  CAS  Google Scholar 

  32. Biederman J, Spencer T . Attention-deficit/hyperactivity disorder (ADHD) as a noradrenergic disorder Biol Psychiatry 1999 46: 1234–1242

    Article  CAS  Google Scholar 

  33. Madras BK, Fahey MA, Bergman J, Canfield DR, Spealman RD . Effects of cocaine and related drugs in nonhuman primates. I. [3H]cocaine binding sites in caudate-putamen J Pharmacol Exp Ther 1989 251: 131–141

    CAS  PubMed  Google Scholar 

  34. Gelernter J, Kranzler HR, Satel SL, Rao PA . Genetic association between dopamine transporter protein alleles and cocaine-induced paranoia Neuropsychopharmacology 1994 11: 195–200

    Article  CAS  Google Scholar 

  35. Gelernter J, Kranzler H, Lacobelle J . Population studies of polymorphisms at loci of neuropsychiatric interest (tryptophan hydroxylase (TPH), dopamine transporter protein (SLC6A3), D3 dopamine receptor (DRD3), apolipoprotein E (APOE), mu opioid receptor (OPRM1), and ciliary neurotrophic factor (CNTF)) Genomics 1998 52: 289–297

    Article  CAS  Google Scholar 

  36. Sullivan PF, Fifield WJ, Kennedy MA, Mulder RT, Sellman JD, Joyce PR . Novelty seeking and a dopamine transporter gene polymorphism (DAT1) Biol Psychiatry 1997 42: 1070–1072

    Article  CAS  Google Scholar 

  37. Heinz A, Goldman D, Jones DW, Palmour R, Hommer D, Gorey JG et al. Genotype influences in vivo dopamine transporter availability in human striatum Neuropsychopharmacology 2000 22: 133–139

    Article  CAS  Google Scholar 

  38. MacKenzie A, Quinn J . A serotonin transporter gene intron 2 polymorphic region, correlated with affective disorders, has allele-dependent differential enhancer-like properties in the mouse embryo Proc Natl Acad Sci USA 1999 96: 15251–15255

    Article  CAS  Google Scholar 

  39. Nakamura Y, Koyama K, Matsushima M . VNTR (variable number of tandem repeat) sequences as transcriptional, translational, or functional regulators J Hum Genet 1998 43: 149–152

    Article  CAS  Google Scholar 

  40. Trefilov A, Krawczak M, Berard J, Schmidtke J . DNA sequence polymorphisms in genes involved in the regulation of dopamine and serotonin metabolism in rhesus macaques Electrophoresis 1999 20: 1771–1777

    Article  CAS  Google Scholar 

  41. Nakamura M, Ueno S, Sano A, Tanabe H . The human serotonin transporter gene linked polymorphism (5-HTTLPR) shows ten novel allelic variants Mol Psychiatry 2000 5: 32–38

    Article  CAS  Google Scholar 

  42. Faraone SV, Biederman J, Weiffenbach B, Keith T, Chu MP, Weaver A et al. Dopamine D4 gene 7-repeat allele and attention deficit hyperactivity disorder Am J Psychiatry 1999 156: 768–770

    CAS  PubMed  Google Scholar 

  43. Rowe DC, Stever C, Giedinghagen LN, Gard JM, Cleveland HH, Terris ST et al. Dopamine DRD4 receptor polymorphism and attention deficit hyperactivity disorder Mol Psychiatry 1998 3: 419–426

    Article  CAS  Google Scholar 

  44. Smalley SL, Bailey JN, Palmer CG, Cantwell DP, McGough JJ, Del'Homme MA et al. Evidence that the dopamine D4 receptor is a susceptibility gene in attention deficit hyperactivity disorder [published erratum appears in Mol Psychiatry 1999; 4: 100] Mol Psychiatry 1998 3: 427–430

    Article  CAS  Google Scholar 

  45. Swanson JM, Sunohara GA, Kennedy JL, Regino R, Fineberg E, Wigal T et al. Association of the dopamine receptor D4 (DRD4) gene with a refined phenotype of attention deficit hyperactivity disorder (ADHD): a family-based approach Mol Psychiatry 1998 3: 38–41

    Article  CAS  Google Scholar 

  46. Brammer DW, Juneau PL, Chrisp CE, O'Rourke CM, Altrogge DM, Peter GK et al. Spontaneous hyperthyroidism in an aged male and female Macaca mulatta J Med Primatol 1998 27: 273–277

    Article  CAS  Google Scholar 

  47. Jonsson EG, Nothen MM, Gustavsson JP, Neidt H, Bunzel R, Propping P et al. Polymorphisms in the dopamine, serotonin, and norepinephrine transporter genes and their relationships to monoamine metabolite concentrations in CSF of healthy volunteers Psychiatry Res 1998 79: 1–9

    Article  CAS  Google Scholar 

  48. Aston-Jones G, Rajkowski J, Kubiak P, Alexinsky T . Locus coeruleus neurons in monkey are selectively activated by attended cues in a vigilance task J Neurosci 1994 14: 4467–4480

    Article  CAS  Google Scholar 

  49. Usher M, Cohen JD, Servan-Schreiber D, Rajkowski J, Aston-Jones G . The role of locus coeruleus in the regulation of cognitive performance Science 1999 283: 549–554

    Article  CAS  Google Scholar 

  50. Gainetdinov RR, Wetsel WC, Jones SR, Levin ED, Jaber M, Caron MG . Role of serotonin in the paradoxical calming effect of psychostimulants on hyperactivity Science 1999 283: 397–401

    Article  CAS  Google Scholar 

  51. Kuczenski R, Segal DS . Effects of methylphenidate on extracellular dopamine, serotonin, and norepinephrine: comparison with amphetamine [published erratum appears in J Neurochem 1997; 69: 1332] J Neurochem 1997 68: 2032–2037

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dina Yang for excellent technical assistance and Sandra Talbot for preparation of the manuscript and figures. Supported by DA 06303, DA 11558, DA 00304, MH14275 (BKM), DA 05857 (RD) and RR 00168.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B K Madras.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, G., De La Garza, R., Novak, M. et al. Single nucleotide polymorphisms distinguish multiple dopamine transporter alleles in primates: implications for association with attention deficit hyperactivity disorder and other neuropsychiatric disorders. Mol Psychiatry 6, 50–58 (2001). https://doi.org/10.1038/sj.mp.4000809

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4000809

Keywords

This article is cited by

Search

Quick links