Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Research Article
  • Published:

The 5-HT2 antagonist ritanserin blocks dopamine re-uptake in the rat frontal cortex

Abstract

The effect of ritanserin on dopamine (DA) re-uptake and efflux was studied in rat frontal cortex synaptosomes. When compared to other 5HT2 receptor antagonists such as ketanserin and risperidone or DA D2 receptor antagonists such as haloperidol and raclopride, the effect of ritanserin proved to be more potent. Ritanserin blocked the DA transporter with a Ki of 0.18 ± 0.06 μM, similar to cocaine (0.11 ± 0.005 μM), while ketanserin had a Ki of 0.93 ± 0.045; haloperidol of 2.07 ± 0.12; risperidone of 18.01 ± 0.62 and raclopride of 24.01 ± 1.55. In addition, 15 min from its local application to the synaptosomes, ritanserin potently released [3]H-DA leaving only 29.6 ± 1.6% of DA content, while ketanserin effect was equal to 46.5 ± 0.9%; haloperidol to 70.4 ± 2.2% and risperidone to 73.9 ± 1.5%, all tested at the dose of 10 μM. Cocaine had no effect on DA efflux. These results suggest that ritanserin has a intrinsic dopaminergic effect which may help to explain its reported improvement on mood, cognition and negative symptoms of schizophrenia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Chiodo LA, Bunney BS . Typical and atypical neuroleptics: differential effects of chronic administration on the activity of A9 and A10 midbrain dopaminergic neurons J Neurosci 1983; 3: 1607–1619

    Article  CAS  Google Scholar 

  2. Moghaddam B, Bunney BS . Acute effects of typical and atypical antipsychotic drugs on the release of dopamine from prefrontal cortex, nucleus accumbens, and striatum of the rat: an in vivo microdialysis study J Neurochem 1990; 54: 1755–1760

    Article  CAS  Google Scholar 

  3. Leysen JE, Jansenn PMF, Heylen L, Gommeren W, Van Gompel P, Lesage et al. Receptor interactions of new antipsychotics: relation to pharmacodynamic and clinical effects Int J Psych Clin Pract 1998; 2: S3–S17

    Article  Google Scholar 

  4. Leysen JE, Niemegeers CJEJ, Tollenaere JP, Laduron PM . Serotonergic component of neuroleptic receptors Nature 1978; 272: 168–171

    Article  CAS  Google Scholar 

  5. Meltzer HY, Matsubara S, Lee JC . Classification of typical and atypical antipsychotic drugs on the basis of dopamine D-1, D-2 and serotonin2 pKi values J Pharmacol Exp Ther 1989; 251: 238–246

    CAS  PubMed  Google Scholar 

  6. Leysen JE, Commeron W, Van Gompel P, Wynants J, Jansenn PMF, Laduron PM . Receptor-binding properties in vitro and in vivo of ritanserin. A very potent and long acting serotonin S2 antagonist Mol Pharmacol 1985; 27: 600–611

    CAS  PubMed  Google Scholar 

  7. Bersani G, Grispini A, Marini S, Pasini A, Valducci M, Ciani N . Neuroleptic-induced extrapyramidal side-effects: clinical perspectives with ritanserin (R-55667), a new selective 5-HT2 receptor blocking agent Curr Ther Res 1986; 40: 492–499

    Google Scholar 

  8. Gelders YG . Thymostenic agents, a novel approach in the treatment of schizophrenia Br J Psychiatry 1989; 155: 33–36

    Article  Google Scholar 

  9. Ugedo L, Grenhoff J, Svensson TH . Ritanserin, a 5HT2 antagonist, activates midbrain dopamine neurons by blocking serotonergic inhibition Psychopharmacology 1989; 98: 45–50

    Article  CAS  Google Scholar 

  10. Devaud LL, Hollingsworth EB, Cooper BR . Alterations in extracellular and tissue levels of biogenic amines in rat brain induced by the serotonin2 receptor antagonist, ritanserin J Neurochem 1992; 59: 1459–1466

    Article  CAS  Google Scholar 

  11. Pehek EA . Local infusion of the serotonin antagonists ritanserin or ICS 205,930 increases in vivo dopamine release in the rat prefrontal cortex Synapse 1996; 24: 12–18

    Article  CAS  Google Scholar 

  12. Lappalainen J, Hieatala J, Koulu M, Syvalahtti E . Neurochemical effects of chronic co-administration of ritanserin and haloperidol: comparison with clozapine effects Eur J Pharmacol 1990; 190: 403–407

    Article  CAS  Google Scholar 

  13. Saller CF, Czupryna MJ, Salama AI . 5-HT2 receptor blockade by ICI 169,369 and other 5-HT2 antagonists modulates the effect of D2 dopamine receptor blockade J Pharmacol Exp Ther 1990; 253: 1162–1170

    CAS  PubMed  Google Scholar 

  14. Liebman JM, Gerhardt SC, Geber R . Effects of 5-HT1A agonists and 5-HT2 antagonists on haloperidol-induced dyskinesias in squirrel monkeys: no evidence for reciprocal 5-HT–dopamine interaction Psychopharmacology (Berl) 1989; 97: 456–461

    Article  CAS  Google Scholar 

  15. Guimarães FS, Mbaya PS, Deakin JFW . Ritanserin facilitates anxiety in a simulated public-speaking paradigm J Psychopharmacol 1997; 11: 225–231

    Article  Google Scholar 

  16. Johnson BA, Chen YR, Swann AC, Schmitz J, Lesser J, Ruiz P et al. Ritanserin in the treatment of cocaine dependence Biol Psychiatry 1997; 42: 932–940

    Article  CAS  Google Scholar 

  17. Tatsumi M, Jansen K, Blakely RD, Richelson E . Pharmacological profile of neuroleptics at human monoamine transporters Eur J Pharmacol 1999; 368: 277–283

    Article  CAS  Google Scholar 

  18. Richelson E, Pfenning M . Blockade by antidepressants and related compounds of biogenic amine uptake into rat brain synaptosomes: most antidepressants selectively block norepinefrine uptake Eur J Pharmacol 1984; 104: 277–286

    Article  CAS  Google Scholar 

  19. Shimada S, Kitayama S, Lin CL, Patel A, Nanthakumar E, Gregor P et al. Cloning and expression of a cocaine-sensitive dopamine transporter cDNA Science 1991; 254: 576–578

    Article  CAS  Google Scholar 

  20. Amara SG, Kuhar MJ . Neurotransmitter transporters: recent progress Annu Rev Neurosci 1993; 16: 73–93

    Article  CAS  Google Scholar 

  21. Sulzer D, Maidment NT, Rayport S . Amphetamine and other weak basis act to promote reverse transport of dopamine in ventral midbrain neurons J Neurochem 1993; 60: 527–535

    Article  CAS  Google Scholar 

  22. Pehek EA, Bi Y . Ritanserin administration potentiates amphetamine-stimulated dopamine release in the rat prefrontal cortex Prog Neuropsychopharmacol Biol Psychiatry 1997; 21: 671–682

    Article  CAS  Google Scholar 

  23. Leysen JE, Van Gompel P, Verwimp M, Niemegeers CJ . Role and localization of serotonin2 (S2)-receptor-binding sites: effects of neuronal lesions Adv Biochem Psychopharmacol 1983; 37: 373–383

    CAS  PubMed  Google Scholar 

  24. Fischette CT, Nock B, Renner K . Effects of 5,7,-dihydroxytriptamine on serotonin1 and serotonin2 receptors throughout the rat central nervous system using quantitative autoradiography Brain Res 1987; 421: 263–279

    Article  CAS  Google Scholar 

  25. Araneda R, Andrade R . 5-Hydroxytryptamine2 and 5-Hydroxytryptamine1A receptors mediate opposing responses on membrane excitability in rat association cortex Neuroscience 1991; 40: 399–412

    Article  CAS  Google Scholar 

  26. Morilak DA, Garlow SJ, Ciaranello RD . Immunocytochemical localization and description of neurons expressing serotonin2 receptors in the rat brain Neuroscience 1993; 54: 701–717

    Article  CAS  Google Scholar 

  27. Hertel P, Nomikos G, Iurlo M, Svensson TH . Risperidone: regional effects in vivo on release and metabolism of dopamine and serotonin in the rat brain Psychopharmacology 1996; 124: 74–86

    Article  CAS  Google Scholar 

  28. Greenhoff J, Tung CS, Ugedo L, Svensson TH . Effects of amperozide, a putative antipsychotic drug, on rat midbrain dopamine neurons recorded in vivo Pharmacol Toxicol 1990; 66: (Suppl 1) 29–33

    Article  Google Scholar 

  29. Weiberger DF . Implications of normal brain development for the pathogenesis of schizophrenia Arch Gen Psychiatry 1987; 44: 660–669

    Article  Google Scholar 

  30. Leysen JE, Gommeren W, Eens A, De Chaffoy De Courcelles D, Stoof JC, Janssen PAJ . Biochemical profile of risperidone a new antipsychotic J Pharmacol Exp Ther 1988; 247: 661–670

    CAS  PubMed  Google Scholar 

  31. Schoemaker H, Nickolson VJ . Dopamine uptake by rat striatal synaptosomes: time and temperature-dependent decay and protection by dithiothreitol and dopamine J Neurochem 1983; 40: 922–928

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The present work was partially supported by the European Community, the Italian Government and the Regione Autonoma della Sardegna through the POP Sardegna.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L Pani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruiu, S., Marchese, G., Saba, P. et al. The 5-HT2 antagonist ritanserin blocks dopamine re-uptake in the rat frontal cortex. Mol Psychiatry 5, 673–677 (2000). https://doi.org/10.1038/sj.mp.4000804

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4000804

Keywords

This article is cited by

Search

Quick links