Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Like-charge attractions in metastable colloidal crystallites

Abstract

Sub-micrometre charged latex spheres can be suspended in water to form regular arrays known as colloidal crystals. In contrast to most conventional solids, colloidal crystals can be forced into metastable superheated states. The structure and dynamics of these metastable crystals show evidence for strong, long-range attractions between the similarly charged spheres. Such attractive interactions are inconsistent with the accepted theory of colloidal interactions, and might influence the properties of many natural and industrial suspensions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Russel, W. B., Saville, D. A. & Schowalter, W. R. Colloidal Dispersions (Cambridge Univ. Press, 1989).

    Book  Google Scholar 

  2. Ito, K., Yoshida, H. & Ise, N. Void structure in colloidal crystals, Science 263, 66–68 (1994).

    Article  ADS  CAS  Google Scholar 

  3. Dosho, S. et al. Recent study of polymer latex dispersions, Langmuir 9, 394–411 (1993).

    Article  CAS  Google Scholar 

  4. Tata, B. V. R., Rajalakshmi, M. & Arora, A. K. Vapour—liquid condensation in charged colloidal suspensions, Phys. Rev. Lett. 69, 3778–3781 (1992).

    Article  ADS  CAS  Google Scholar 

  5. Tata, B. V. R. & Arora, A. K. Tata and Arora reply, Phys. Rev. Lett. 72, 787 (1994).

    Article  ADS  CAS  Google Scholar 

  6. Palberg, T. & Würth, M. Comment on ‘Vapour—liquid condensation in charged colloidal suspensions’, Phys. Rev. Lett. 72, 786 (1994).

    Article  ADS  CAS  Google Scholar 

  7. Kremer, K., Robbins, M. O. & Grest, G. S. Phase diagram of Yukawa systems: model for charge-stabilized colloids, Phys. Rev. Lett. 57, 3694–2697 (1986).

    Article  ADS  Google Scholar 

  8. Shih, W. Y., Aksay, I. A. & Kikuchi, R. Phase diagrams of charged colloidal particles, J. Chem. Phys. 86, 5127–5132 (1987).

    Article  ADS  CAS  Google Scholar 

  9. Robbins, M. O., Kremer, K. & Grest, G. S. Phase diagram and dynamics of Yukawa systems, J. Chem. Phys. 88, 3286–3312 (1988).

    Article  ADS  CAS  Google Scholar 

  10. Meijer, E. J. & Frenkel, D. Melting line of Yukawa system by computer simulation, J. Chem. Phys. 94, 2269–2271 (1991).

    Article  ADS  CAS  Google Scholar 

  11. Stevens, M. J. & Robbins, M. O. Melting of Yukawa systems: a test of phenomenological melting criteria, J. Chem. Phys. 98, 2319–2324 (1993).

    Article  ADS  CAS  Google Scholar 

  12. Sirota, E. B., Ou-Yang, H. D., Sinha, S. K. & Chaikin, P. M. Complete phase diagram of a charged colloidal system: a synchrotron X-ray scattering study, Phys. Rev. Lett. 62, 1524–1527 (1989).

    Article  ADS  CAS  Google Scholar 

  13. Monovoukas, Y. & Gast, A. P. The experimental phase diagram of charged colloidal suspensions, J. Colloid Interface Sci. 128, 533–548 (1989).

    Article  ADS  CAS  Google Scholar 

  14. Derjaguin, B. V. & Landau, L. Theory of the stability of strongly charged lyophobic sols and the adhesion of srongly charged particles in solutions of electrolytes, Acta Physicochim. (USSR) 14, 633–662 (1941).

    Google Scholar 

  15. Verwey, E. J. & Overbeek, J. Th. G. Theory of the Stability of Lyophobic Colloids (Elsevier, Amsterdam, 1948).

    Google Scholar 

  16. Crocker, J. C. & Grier, D. G. Microscopic measurement of the pair interaction potential of charge-stabilized colloid, Phys. Rev. Lett. 73, 352–355 (1994).

    Article  ADS  CAS  Google Scholar 

  17. Crocker, J. C. & Grier, D. G. Methods of digital video microscopy for colloidal studies, J. Colloid Interface Sci. 179, 298–310 (1996).

    Article  ADS  CAS  Google Scholar 

  18. Crocker, J. C. & Grier, D. G. When like charges attract: the effects of geometrical confinement on long-range colloidal interactions, Phys. Rev. Lett. 77, 1897–1900 (1996).

    Article  ADS  CAS  Google Scholar 

  19. Pailthorpe, B. A. & Russel, W. B. The retarded van der Waals interaction between spheres, J. Colloid Interface Sci. 89, 563–566 (1982).

    Article  ADS  CAS  Google Scholar 

  20. Larsen, A. E. & Grier, D. G. Melting of metastable crystallites in charge-stabilized colloidal suspensions, Phys. Rev. Lett. 76, 3862–3865 (1996).

    Article  ADS  CAS  Google Scholar 

  21. Happel, J. & Brenner, H. Viscous flow in multiparticle systems: Motion of spheres and a fluid in a cylindrical tube, Am. Inst. Chem. Eng. J. 3, 506–513 (1957).

    Article  CAS  Google Scholar 

  22. Leamy, H. J. & Jackson, K. A. Roughness of the crystal–vapor interface, J. Appl. Phys. 42, 2121–2127 (1971).

    Article  ADS  CAS  Google Scholar 

  23. Hoover, W. G. & Ree, F. H. Melting transition and communal entropy for hard spheres, J. Chem. Phys. 49, 3609–3617 (1968).

    Article  ADS  CAS  Google Scholar 

  24. Hoover, W. G., Gray, S. G. & Johnson, K. W. Thermodynamic properties of the fluid and solid phases for inverse power potentials, J. Chem. Phys. 55, 1128–1136 (1971).

    Article  ADS  CAS  Google Scholar 

  25. Curtin, W. A. Density functional theory of crystal–melt interfaces, Phys. Rev. Lett. 59, 1228–1231 (1987).

    Article  ADS  CAS  Google Scholar 

  26. Curtin, W. A. Density-functional theory of the solid-liquid interface, Phys. Rev. B 39, 6775–6791 (1989).

    Article  ADS  CAS  Google Scholar 

  27. Marr, D. W. & Gast, A. P. Planar density-functional approach to the solid–fluid interface of simple liquids, Phys. Rev. E 47, 1212–1221 (1993).

    Article  ADS  CAS  Google Scholar 

  28. Kepler, G. M. & Fraden, S. Attractive potential between confined colloids at low ionic strength, Phys. Rev. Lett. 73, 356–359 (1994).

    Article  ADS  CAS  Google Scholar 

  29. Carbajal-Tinoco, M. D., Castro-Román, F. Arauz-Lara, J. L. Static properties of confined colloidal suspensions, Phys. Rev. E 53, 3745–3749 (1996).

    Article  ADS  CAS  Google Scholar 

  30. Sogami, I. Effective potential between charged spherical particles in dilute suspension, Phys. Lett. 96A, 199–203 (1983).

    Article  ADS  CAS  Google Scholar 

  31. Sogami, I. & Ise, N. On the electrostatic interaction in macroionic solutions, J. Chem. Phys. 81, 6320–6332 (1984).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larsen, A., Grier, D. Like-charge attractions in metastable colloidal crystallites. Nature 385, 230–233 (1997). https://doi.org/10.1038/385230a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/385230a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing