Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Infrared remote sensing of breaking waves

Abstract

ENERGY dissipation due to deep-water wave breaking plays a critical role in the development and evolution of the ocean surface wave field. Furthermore, the energy lost by the wave field via the breaking process is a source for turbulent mixing and air entrainment, which enhance air–sea heat and gas transfer1–3. But the current lack of reliable methods for measuring energy dissipation associated with wave breaking inhibits the quantitative study of processes occurring at ocean surfaces, and represents a major impediment to the improvement of global wave-prediction models4. Here we present a method for remotely quantifying wave-breaking dynamics which uses an infrared imager to measure the temperature changes associated with the disruption and recovery of the surface thermal boundary layer (skin layer). Although our present results focus on quantifying energy dissipation—in particular, we show that the recovery rate of the skin layer in the wakes of breaking waves is correlated with the energy dissipation rate—future applications of this technique should help to elucidate the nature of important small-scale surface processes contributing to air–sea heat5 and gas6 flux, and lead to a fuller understanding of general ocean–atmosphere interactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Banner, M. L. & Peregrine, D. H. Annu. Rev. Fluid Mech. 25, 373–397 (1993).

    Article  ADS  Google Scholar 

  2. Thorpe, S. A. Prog. Oceanogr. 35, 315–352 (1995).

    Article  ADS  Google Scholar 

  3. Melville, W. K. Annu. Rev. Fluid Mech. 28, 279–321 (1996).

    Article  ADS  Google Scholar 

  4. Komen, G. J. et al. Dynamics and Modelling of Ocean Waves (Cambridge Univ. Press, 1994).

    Book  Google Scholar 

  5. Farmer, D. M. & Gemmrich, J. R. J. Phys. Oceangr. 26, 816–825 (1996).

    Article  ADS  Google Scholar 

  6. Kitaigorodskii, S. A. J. Phys. Oceanogr. 14, 960–972 (1984).

    Article  ADS  Google Scholar 

  7. Katsaros, K. B. Boundary-Layer Meteorol. 18, 107–127 (1980).

    Article  ADS  Google Scholar 

  8. Robinson, I. S., Wells, N. C. & Charnock, H. Int. J. Remote Sens. 5, 19–45 (1984).

    Article  ADS  Google Scholar 

  9. McAlister, E. D. & McLeish, W. J. Geophys. Res. 74, 3408–3414 (1969).

    Article  ADS  Google Scholar 

  10. Wu, J. J. Phys. Oceanogr. 1, 284–286 (1971).

    Article  ADS  Google Scholar 

  11. Hill, R. H. J. Phys. Oceanogr. 2, 190–198 (1972).

    Article  ADS  Google Scholar 

  12. Ewing, G. & McAlister, E. D. Science 131, 1374–1376 (1960).

    Article  ADS  CAS  Google Scholar 

  13. Jessup, A. T., Zappa, C. J., Hesany, V., Loewen, M. R. & Skafel, M. G. in Air-Water Gas Transfer (ed. Jähne, B. & Monahan, E. C.) 601–610 (AEON Verlag & Studio, Hanau, 1995).

    Google Scholar 

  14. Eisner, L., Bell, E. E., Young, J. & Oetjen, R. A. J. Opt. Soc. Am. 52, 201–209 (1962).

    Article  ADS  Google Scholar 

  15. Phillips, O. M. J. Fluid Mech. 156, 505–531 (1985).

    Article  ADS  Google Scholar 

  16. Ding, L. & Farmer, D. M. J. Phys. Oceanogr. 24, 1368–1387 (1994).

    Article  ADS  Google Scholar 

  17. Duncan, J. H. Proc. R. Soc. Lond. A 377, 331–348 (1981).

    Article  ADS  Google Scholar 

  18. Melville, W. K. J. Phys. Oceangr. 24, 2041–2049 (1994).

    Article  ADS  Google Scholar 

  19. Thorpe, S. A. J. Phys. Oceanogr. 23, 2498–2502 (1993).

    Article  ADS  Google Scholar 

  20. Chan, E. S. & Melville, W. K. Proc. R. Soc. Lond. A 417, 95–131 (1988).

    Article  ADS  Google Scholar 

  21. Melville, W. K. & Rapp, R. J. Nature 317, 514–516 (1985).

    Article  ADS  Google Scholar 

  22. Rapp, R. J. & Melville, W. K. Phil. Trans. R. Soc. Lond. A 331, 735–800 (1990).

    Article  ADS  Google Scholar 

  23. Loewen, M. R. & Melville, W. K. J. Fluid Mech. 224, 601–623 (1991).

    Article  ADS  Google Scholar 

  24. Katsaros, K. B., Liu, W. T., Businger, J. A. & Tillman, J. E. J. Fluid Mech. 83, 311–335 (1977).

    Article  ADS  Google Scholar 

  25. Barren, E. J. Eos 76, 185–190 (1995).

    Article  ADS  Google Scholar 

  26. Keeling, R. F. J. Mar. Res. 51, 237–271 (1993).

    Article  CAS  Google Scholar 

  27. Jähne, B., Libner, P., Fischer, R., Billen, T. & Plate, E. J. Tellus 41B, 177–195 (1989).

    Article  ADS  Google Scholar 

  28. Soloviev, A. V. & Schlüssel, P. J. Phys. Oceanogr. 24, 1339–1346 (1994).

    Article  ADS  Google Scholar 

  29. Haußecker, H. & Jähne, B. in Air-Water Gas Transfer (eds Jähne, B. & Monahan, E. C.) 775–784 (AEON Verlag & Studio, Hanau, 1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jessup, A., Zappa, C., Loewen, M. et al. Infrared remote sensing of breaking waves. Nature 385, 52–55 (1997). https://doi.org/10.1038/385052a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/385052a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing