Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structural characterization of pentacoordinate silicon in a calcium silicate

Abstract

IN silicate minerals formed at pressures typical of the Earth's crust, the silicon is usually coordinated by four oxygen atoms. In contrast, silicates formed at higher pressures, typical of the Earth's transition zone and lower mantle, contain predominantly six-coordinated silicon. Silicon coordinated by five oxygen atoms is not normally found as a structural element in crystalline phases, but is nevertheless believed to play a central role in many dynamic processes that occur in silicates. For example, pentacoordinate silicon is probably a component of aluminosili-cate melts and glasses at mantle temperatures and pressures1,2, where it will dominate their transport properties3–6; it is also believe to act as an intermediate activated state during oxygen diffusion in silicate minerals7,8. Here we report the complete structure determination of an inorganic crystalline silicate—CaSi2O5—containing SiO5 groups. Our results confirm the previous attribution1,2,9 of peaks in the 29Si NMR spectrum of this material to the presence of pentacoordinate silicon, and the detailed geometry that we determine for the SiO5 group should provide a firm basis for characterizing and quantifying the role of pentacoordinate silicon in silicate melts and glasses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Stebbins, J. F. & McMillan, P. Am. Mineral. 74, 965–968 (1989).

    CAS  Google Scholar 

  2. Xue, X., Stebbins, J. F., Kanzaki, M., McMillan, P. F. & Poe, B. Am. Mineral. 76, 8–26 (1991).

    CAS  Google Scholar 

  3. Rustad, J. R., Yuen, D. A. & Spera, F. J. Phys. Rev. A 42, 2081–2089 (1990).

    Article  ADS  CAS  Google Scholar 

  4. Angell, C. A., Cheeseman, P. A. & Tammadon, S. Science 218, 885–887 (1982).

    Article  ADS  CAS  Google Scholar 

  5. Kubicki, J. D. & Lasaga, A. C. Am. Mineral. 73, 941–955 (1988).

    CAS  Google Scholar 

  6. Kubicki, J. D. & Lasaga, A. C. Phys. Chem. Minerals 17, 661–673 (1990).

    ADS  Google Scholar 

  7. Liebau, F. Inorg. Chim. Acta 89, 1–7 (1984).

    Article  CAS  Google Scholar 

  8. Wall, A. & Price, G. D. in Perovskite: A Structure of Great Interest to Geophysics and Material Science (eds Navrotsky, A. & Weidner, D.) 45–53 (Am. Geophys. Union, Washington DC, 1989).

    Google Scholar 

  9. Kanzaki, K., Stebbins, J. F. & Xue, X. Geophys. Res. Lett. 18, 463–466 (1991).

    Article  ADS  CAS  Google Scholar 

  10. Wang, Y. & Weidner, D. J. Geophys. Res. Lett. 21, 895–898 (1994).

    Article  ADS  CAS  Google Scholar 

  11. Gasparik, T., Wolf, K. & Smith, C. M. Am. Mineral 79, 1219–1222 (1994).

    CAS  Google Scholar 

  12. Kanzaki, K. (abstr.) Rev. High Press. Sci. Technol. 3, 217 (1994).

    Google Scholar 

  13. Kudoh, Y. & Kanzaki, M. Int. Union of Crystallography, XVII Congress, Collected Abstr. 317 (Int. Union Crystallography, Chester, UK, 1996).

  14. Taylor, M. & Brown, G. E. Am. Mineral. 61, 435–447 (1976).

    CAS  Google Scholar 

  15. Finger, L. W. & Hazen, R. M. Acta Crystallogr. B 47, 561–580 (1991).

    Article  Google Scholar 

  16. Brese, N. & O'Keefe, M. Acta Crystallogr. B 47, 192–197 (1991).

    Article  Google Scholar 

  17. Chuit, C., Corriu, R. J. P., Reye, C. & Young, J. C. Chem. Rev. 93, 1371–1448 (1993).

    Article  CAS  Google Scholar 

  18. Hemmati, M., Chizmeshya, A., Wolf, G. H., Poole, P. H., Shao, J. & Angell, C. A. Phys. Rev. B 51, 14841–14848 (1995).

    Article  ADS  CAS  Google Scholar 

  19. Wolf, G. H. & McMillan, P. F. MSA Rev. Mineral. 32, 505–562 (1995).

    CAS  Google Scholar 

  20. Howells, E. R., Phillips, D. C. & Rogers, D. Acta Crystallogr. 3, 210–214 (1950).

    Article  CAS  Google Scholar 

  21. Wilson, A. J. C. Acta Crystallogr. 2, 318–321 (1949).

    Article  Google Scholar 

  22. Altomare, A. et al. J. Appl. Crystallogr. 27, 435–436 (1994).

    Google Scholar 

  23. Finger, L. W. & Prince, E. Natl Bur. Stand. Tech. Note 854 (1974).

  24. Robinson, K., Gibbs, G. V. & Ribbe, P. H. Science 172, 567–570 (1971).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Angel, R., Ross, N., Seifert, F. et al. Structural characterization of pentacoordinate silicon in a calcium silicate. Nature 384, 441–444 (1996). https://doi.org/10.1038/384441a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/384441a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing