Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Capture of retrotransposon DNA at the sites of chromosomal double-strand breaks

Abstract

NON-HOMOLOGOUS repair of broken chromosomes in Saccharomyces cerevisiae can be studied at a defined location by expressing the site-specific HO endonuclease that cuts the mating-type (MAT) locus. When homologous recombination is prevented, most double-strand breaks are repaired by non-homologous end-joinings similar to those observed in mammalian cells. About 1% of non-homologous repair events were exceptional, having 'captured' approximately 100 base pairs of DNA within the HO cleavage site. In each case, the insertion came from yeast's retrotransposon Tyl element. Four of the five contained the R-U5 region, which is the first part of Tyl messenger RNA to be converted to complementary DNA. The capture of cDNA fragments at the sites of double-strand breaks may account for the way that pseudogenes and long and short interspersed sequences (LINES and SINES) have been inserted at many locations in the mammalian genome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Haber, J. E. BioEssays 17, 609–620 (1995).

    Article  CAS  Google Scholar 

  2. Roth, D. & Wilson, J. H. in Genetic Recombination (eds Kucherlapati, R. & Smith, G. R.) 621–653 (American Society for Microbiology, Washington DC, 1988).

    Google Scholar 

  3. Pfeiffer, P., Throde, S., Hanke, J. & Vielmetter, W. Mol. Cell. Biol 14, 888–895 (1994).

    Article  CAS  Google Scholar 

  4. Kramer, K. M., Brock, J. A., Bloom, K., Moore, J. K. & Haber, J. E. Mol. Cell. Biol. 14, 1293–1301 (1994).

    Article  CAS  Google Scholar 

  5. Moore, J. K. & Haber, J. E. Mol. Cell. Biol. 16, 2164–2173 (1996).

    Article  CAS  Google Scholar 

  6. Jensen, R. & Herskowitz, I. Cold Spring Harb. Symp. Quant. Biol. 49, 97–104 (1984).

    Article  CAS  Google Scholar 

  7. Connolly, B., White, C. I. & Haber, J. E. Mol. Cell. Biol. 8, 2342–2349 (1988).

    Article  CAS  Google Scholar 

  8. Hauber, J., Nelbock, J. H. & Feldmann, H. Nucleic Acids Res. 13, 2745–2758 (1985).

    Article  CAS  Google Scholar 

  9. Voytas, D. F. & Boeke, J. D. Trends Genet. 9, 421–427 (1993).

    Article  CAS  Google Scholar 

  10. Clare, J. & Farabaugh, P. Proc. Natl Accad. Sci. USA 82, 2829–2833 (1985).

    Article  ADS  CAS  Google Scholar 

  11. Boeke, J. D. & Corces, V. G. Annu. Rev. Microbiol. 43, 403–434 (1989).

    Article  CAS  Google Scholar 

  12. Chapman, K. B., Bystrom, A. S. & Boeke, J. D. Proc. Natl Acad. Sci. USA 89, 3236–3240 (1992).

    Article  ADS  CAS  Google Scholar 

  13. Nickoloff, J. A., Singer, J. D., Hoekstra, M. F. & Heffron, F. J. Mol. Biol. 207, 527–541 (1989).

    Article  CAS  Google Scholar 

  14. Boeke, J. D., Xu, H. & Fink, G. R. Science 239, 280–282 (1988).

    Article  ADS  CAS  Google Scholar 

  15. Errede, B., Company, M. & Swanstrom, R. Mol. Cell. Biol. 6, 1334–1338 (1986).

    Article  CAS  Google Scholar 

  16. Mézard, C. & Nicolas, A. Mol. Cell. Biol. 14, 1278–1292 (1994).

    Article  Google Scholar 

  17. Teng, S.-C., Kim, B. & Gabriel, A. Nature 383, 641–644 (1986).

    Article  ADS  Google Scholar 

  18. Derr, L. K., Strathern, J. N. & Garfinkel, D. J. Cell 67, 355–364 (1991).

    Article  CAS  Google Scholar 

  19. Müller, F., Laufer, W., Pott, U. & Ciriacy, M. Mol. Gen. Genet. 226, 145–153 (1991).

    Article  Google Scholar 

  20. Yang, J., Zimmerly, S., Perlman, P. S. & Lambowitz, A. M. Nature 381, 332–335 (1996).

    Article  ADS  CAS  Google Scholar 

  21. Britten, R. J., Stout, D. B. & Davidson, E. H. Proc. Natl Acad. Sci. USA 85, 4770–4774 (1988).

    Article  ADS  CAS  Google Scholar 

  22. Shen, M. R., Batzer, M. A. & Deininger, P. L. J. Mol. Evol. 33, 311–320 (1991).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moore, J., Haber, J. Capture of retrotransposon DNA at the sites of chromosomal double-strand breaks. Nature 383, 644–646 (1996). https://doi.org/10.1038/383644a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/383644a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing