Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cooperation of the tumour suppressors IRF-1 and p53 in response to DNA damage

Abstract

NORMALLY growing cells promptly cease DNA synthesis when exposed to genotoxic stresses, such as radiation, and this cell-cycle arrest prevents the accumulation of mutations1,2. The transcription factor interferon regulatory factor (IRF)-1 is essential for the regulation of the interferon system3–5, inhibits cell growth, and manifests tumour-suppressor activities6,7. Here we show that mouse embryonic fibroblasts (EFs) lacking IRF-1 are deficient in their ability to undergo DNA-damage-induced cell-cycle arrest. A similar phenotype has been observed in EFs lacking the tumour suppressor p53 (refs 8, 9), although the expression of IRF-1 and p53 are independent of one another. Furthermore, we show that transcriptional induction of the gene encoding p21 (WAF1, CIP1)10–12 a cell-cycle inhibitor, by γ-irradiation is dependent on both p53 and IRF-1, and that the p21 promoter is activated, either directly or indirectly, by both in a transient cotransfection assay. These two tumour-suppressor transcription factors therefore converge functionally to regulate the cell cycle through the activation of a common target genes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hartwell, L. Cell 71, 543–546 (1992).

    Article  CAS  PubMed  Google Scholar 

  2. Hunter, T. & Pines, J. Cell 79, 573–582 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Matsuyama, T. et al. Cell 75, 83–97 (1993).

    Article  CAS  PubMed  Google Scholar 

  4. Kamijo, R. et al. Science 263, 1612–1615 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Kimura, T. et al. Science 264, 1921–1924 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Tanaka, N. et al. Cell 77, 829–839 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Tamura, T. et al. Nature 376, 596–599 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Vogelstein, B. & Kinzler, K. W. Cell 70, 523–526 (1992).

    Article  CAS  PubMed  Google Scholar 

  9. Liebermann, D. A., Hoffman, B. & Steinman, R. A. Oncogene 11, 199–210 (1995).

    CAS  PubMed  Google Scholar 

  10. El-Deiry, W. S. et al. Cell 75, 817–825 (1993).

    Article  CAS  PubMed  Google Scholar 

  11. Harper, J. W., Adami, G. R., Wei, N., Keyomarsi, K. & Elledge, S. J. Cell 75, 805–816 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Xiong, Y. et al. Nature 366, 701–704 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Lowe, S. W., Ruley, H. E., Jacks, T. & Housman, D. E. Cell 74, 957–967 (1993).

    Article  CAS  PubMed  Google Scholar 

  14. Sherr, C. J. & Roberts, J. M. Genes Dev. 9, 1149–1163 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Brugarolas, J. et al. Nature 377, 552–557 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Darnell Jr, J. E., Kerr, I. M. & Stark, G. R. Science 264, 1415–1421 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Chin, Y. E. et al. Science 272, 719–722 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Meraz, M. A. et al. Cell 84, 431–442 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Durbin, J. E., Hackenmiller, R., Simon, M. C. & Levy, D. E. Cell 84, 443–450 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Kastan, M. B., Onyekwere, O., Sidransky, D., Vogelstein, B. & Craig, R. W. Cancer Res. 51, 6304–6311 (1991).

    CAS  PubMed  Google Scholar 

  21. El-Deiry, W. S. et al. Cancer Res. 54, 1169–1174 (1994).

    CAS  PubMed  Google Scholar 

  22. El-Deiry, W. S. et al. Cancer Res. 55, 2910–2919 (1995).

    CAS  PubMed  Google Scholar 

  23. Parker, S. B. et al. Science 267, 1024–1027 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Halevy, O. et al. Science 267, 1018–1021 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Cross, S. M. et al. Science 267, 1353–1356 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Willman, C. L. et al. Science 259, 968–971 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Matsushime, H. et al. Molec. Cell Biol. 14, 2066–2076 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Harada, H. et al. Science 259, 971–974 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Baker, S. J., Markowitz, S., Fearon, E. R., Willson, J. K. V. & Vogelstein, B. Science 249, 912–915 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Haupt, Y., Rowan, S., Shaulian, E., Vousden, K. H. & Oren, M. Genes Dev. 9, 2170–2183 (1995).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanaka, N., Ishihara, M., Lamphier, M. et al. Cooperation of the tumour suppressors IRF-1 and p53 in response to DNA damage. Nature 382, 816–818 (1996). https://doi.org/10.1038/382816a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/382816a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing