Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Fluid-mediated influence of adjacent thrusting on the seismic cycle at Parkfield

Abstract

THE San Andreas fault near Parkfield, California has experienced moderate to large earthquakes about every 20 years since 1881, the most recent of which occurred in 19661–3. Statistical recurrence and precursory quiescence models1,4,5 led to a prediction of the next event for 1992 or before, but this event has not yet occurred. Here I present a model6 that attributes the 'non-occurrence' of the expected earthquake to the influence of adjacent thrusting on the rate of fault weakening from increasing pore pressures within the fault zone. Reductions in fault-normal strain rates7–9, and the onset of seismic quiescence along the San Andreas fault, both coincide with adjacent blind thrust faulting in the 1982–85 earthquake sequence of New Idria, Coalinga and Kettleman Hills. These events 'turned off' a compaction-induced weakening mechanism and extended the (proposed) seismic cycle at Parkfield. A model simulation of this effect shows a strong correlation in space and time of calculated and observed earthquake hypocentres, and shows that observed seismicity patterns from 1969–95 can be explained by reduced compaction rates brought on by adjacent thrusting. The model may have applications to other linked thrust/strike-slip fault systems, such as are found in southern California and other transpressional regions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bakun, W. H. & Lindh, A. G. Science 229, 619–624 (1985).

    Article  ADS  CAS  Google Scholar 

  2. Bakun, W. H. & McEvilly, T. V. J. Geophys. Res. 89, 3051–5058 (1984).

    Article  ADS  Google Scholar 

  3. Roeloffs, E. & Langbein, J. Rev. Geophys. 32, 315–336 (1994).

    Article  ADS  Google Scholar 

  4. Wyss, M., Bodin, P. & Habermann, R. E. Nature 345, 428–431 (1990).

    Article  ADS  Google Scholar 

  5. Savage, J. C. Bull. Seismol. Soc. Am. 83, 1–6 (1993).

    Google Scholar 

  6. Miller, S. A., Nur, A. & Olgaard, D. L. Geophys. Res. Lett. 23, 197–200 (1996).

    Article  ADS  Google Scholar 

  7. Harris, R. A. & Segall, P. J. Geophys. Res. 92, 7945–7962 (1987).

    Article  ADS  Google Scholar 

  8. Dong, D. thesis, Massachusetts Inst. Technol. (1993).

  9. Langbein, J. O., Burford, R. O. & Slater, L. E. J. Geophys. Res. 95, 2533–2552 (1990).

    Article  ADS  Google Scholar 

  10. Stein, R. S. & Ekström, G. J. Geophys. Res. 97, 4865–4883 (1992).

    Article  ADS  Google Scholar 

  11. Habermann, R. E. Bull. Seismol. Soc. Am. 77, 141–159 (1987).

    Google Scholar 

  12. Poley, C. M., Lindh, A. G., Bakun, W. H. & Schulz, S. S. Nature 327, 134–137 (1987).

    Article  ADS  Google Scholar 

  13. Mavko, G. M., Schulz, S. & Brown, B. D. Bull. Seismol. Soc. Am. 75, 475–489 (1985).

    Google Scholar 

  14. Simpson, R. W., Schulz, S. S., Dietz, L. D. & Burford, R. O. Pure Appl. Geophys. 126, 665–685 (1988).

    Article  ADS  Google Scholar 

  15. Wyss, M., Westerhaus, M., Berckhemer, H. & Ates, R. Geophys. J. Int. 123, 117–124 (1995).

    Article  ADS  Google Scholar 

  16. King, N. E., Segall, P. & Prescott, W. J. Geophys. Res. 92, 2747–2766 (1987).

    Article  ADS  Google Scholar 

  17. Johnson, P. A. & McEvilly, T. V. J. Geophys. Res. 100, 12937–12950 (1995).

    Article  ADS  Google Scholar 

  18. Nadeau, R. M., Foxall, W. & McEvilly, T. V. Science 267, 503–507 (1995).

    Article  ADS  CAS  Google Scholar 

  19. Rice, J. R. in Fault Mechanics and Transport Properties of Rocks (eds Evans, B. & Wong, T.-f.) 476–503 (Academic, San Diego, 1992).

    Google Scholar 

  20. Lockner, D. A. & Byerlee, J. D. Pure appl. Geophys. 145, 717–745 (1995).

    Article  ADS  Google Scholar 

  21. Sleep, N. H. & Blanpied, M. L. Nature 359, 687–692 (1992).

    Article  ADS  Google Scholar 

  22. Segall, P. & Rice, J. R. J. Geophys. Res. 100, 22155–22171 (1995).

    Article  ADS  Google Scholar 

  23. Byerlee, J. D. Geophys. Res. Lett. 17, 2109–2112 (1990).

    Article  ADS  Google Scholar 

  24. Ben-Zion, Y. & Rice, J. R. J. Geophys. Res. 98, 14109–14131 (1993).

    Article  ADS  Google Scholar 

  25. Stuart, W. D., Archuleta, R. J. & Lindh, A. G. J. Geophys. Res. 90, 592–604 (1985).

    Article  ADS  Google Scholar 

  26. Chinnery, M. A. Bull Seismol. Soc. Am. 53, 921–932 (1963).

    Google Scholar 

  27. Bak, P. & Tang, C. J. Geophys. Res. 94, 15635–15637 (1989).

    Article  ADS  Google Scholar 

  28. Scholz, C. H. The Mechanics of Earthquakes and Faulting (Cambridge Univ. Press, 1990).

    Google Scholar 

  29. Sibson, R. H. Earth Sci. Rev. 32, 141–144 (1992).

    Article  ADS  Google Scholar 

  30. Wyss, M. Geophys. Res. Lett. 18, 617–621 (1991).

    Article  ADS  Google Scholar 

  31. Ben-Zion, Y., Rice, J. R. & Dmowska, R. J. Geophys. Res. 98, 2135–2144 (1993).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, S. Fluid-mediated influence of adjacent thrusting on the seismic cycle at Parkfield. Nature 382, 799–802 (1996). https://doi.org/10.1038/382799a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/382799a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing