Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure of the WW domain of a kinase-associated protein complexed with a proline-rich peptide

Abstract

THE WW domain is a new protein module with two highly conserved tryptophans that binds proline-rich peptide motifs in vitro. It is present in a number of signalling and regulatory proteins, often in several copies1–3. Here we investigate the solution structure of the WW domain of human YAP65 (for Yes kinase-associated protein) in complex with proline-rich peptides containing the core motif PPxY (ref. 4). The structure of the domain with the bound peptide GTPPPPYTVG is a slightly curved, three-stranded, antiparallel β-sheet. Two prolines pack against the first tryptophan, forming a hydrophobic buckle on the convex side of the sheet. The concave side has three exposed hydrophobic residues (tyrosine, tryptophan and leucine) which form the binding site for the ligand. A non-conserved isoleucine in the amino-terminal flanking region covers a hydrophobic patch and stabilizes the WW domain of human YAP65 in vitro. The structure of the WW domain differs from that of the SH3 domain and reveals a new design for a protein module that uses stacked aromatic surface residues to arrange a binding site for proline-rich peptides.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bork, P. & Sudol, M. Trends biochem. Sci. 19, 531–533 (1994).

    Article  CAS  Google Scholar 

  2. Andre, B. & Springael, J. Y. Biochem. biophys. Res. Commun. 205, 1201–1205 (1994).

    Article  CAS  Google Scholar 

  3. Hofmann, K. & Bucher, P. FEBS Lett. 358, 153–157 (1995).

    Article  CAS  Google Scholar 

  4. Chen, H. I. & Sudol, M. Proc. natn. Acad. Sci. U.S.A. 92, 7819–7823 (1995).

    Article  ADS  CAS  Google Scholar 

  5. Pawson, T. Nature 373, 573–580 (1995).

    Article  ADS  CAS  Google Scholar 

  6. Cohen, G. B., Ren, R. & Baltimore, D. Cell 80, 237–248 (1995).

    Article  CAS  Google Scholar 

  7. Sudol, M., Chen, H. I., Bougeret, C., Einbond, A. & Bork, P. FEBS Lett. 369, 67–71 (1995).

    Article  CAS  Google Scholar 

  8. Bork, P. & Margolis, B. Cell 80, 693–694 (1995).

    Article  CAS  Google Scholar 

  9. Zhou, M. M. et al. Nature 378, 587–592 (1995).

    ADS  Google Scholar 

  10. Chan, D. C., Bedford, M. T. & Leder, P. EMBO J. 15, 1045–1054 (1996).

    Article  CAS  Google Scholar 

  11. Cicchtti, P., Mayer, B. J., Thiel, G. & Baltimore, D. Science 257, 803–806 (1992).

    Article  ADS  Google Scholar 

  12. Ren, R., Mayer, B. J., Cicchetti, P. & Baltimore, D. Science 259, 1157–1161 (1993).

    Article  ADS  CAS  Google Scholar 

  13. Staub, O. et al. EMBO J. 15, 2371–2380 (1996).

    Article  CAS  Google Scholar 

  14. Schild, L. et al. EMBO J. 15, 2381–2387 (1996).

    Article  CAS  Google Scholar 

  15. Nilges, M., Clore, G. M. & Gronenborn, A. M. FEBS Lett. 229, 317–324 (1988).

    Article  CAS  Google Scholar 

  16. Brünger, A. T. X-PLOR 3.1 Manual (Yale Univ. Press, New Haven, 1992).

    Google Scholar 

  17. Viguera, A. R., Arrondo, J. L. R., Musacchio, A., Saraste, M. & Serrano, L. Biochemistry 133, 10925–10933 (1994).

    Article  Google Scholar 

  18. Aue, W. P., Bartholdi, E. & Ernst, R. R. J. chem. Phys. 64, 2229–2246 (1976).

    Article  ADS  CAS  Google Scholar 

  19. Griesinger, C., Otting, G., Wütrich, K. & Ernst, R. R. J. Am. chem. Soc. 110, 7870–7871 (1988).

    Article  CAS  Google Scholar 

  20. Jeener, J., Meier, B. H., Bachmann, P. & Ernst, R. R. J. chem. Phys. 71, 4546–4553 (1979).

    Article  ADS  CAS  Google Scholar 

  21. Kay, L. E., Ikura, M., Tschudin, R. & Bax, A. J. magn. Reson. 89, 496–514 (1990).

    ADS  CAS  Google Scholar 

  22. Fesik, S. W. & Zuiderweg, E. R. P. J. magn. Reson. 87, 588–593 (1988).

    ADS  Google Scholar 

  23. Marion, D., Kay, L. E., Sparks, S. W., Torchia, D. A. & Bax, A. J. Am. chem. Soc. 111, 1515–1517 (1989).

    Article  CAS  Google Scholar 

  24. Otting, G. & Wüthrich, K. J. magn. Reson. 85, 586–594 (1989).

    ADS  CAS  Google Scholar 

  25. Kraulis, P. J. appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  26. Nicholls, A., Sharp, K. A. & Honig, B. Proteins 11, 281–296 (1991).

    Article  CAS  Google Scholar 

  27. Garnier, L., Wills, J. W., Verderame, M. F. & Sudol, M. Nature 381, 744–745 (1996).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Macias, M., Hyvönen, M., Baraldi, E. et al. Structure of the WW domain of a kinase-associated protein complexed with a proline-rich peptide. Nature 382, 646–649 (1996). https://doi.org/10.1038/382646a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/382646a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing