Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

An essential component of the decapping enzyme required for normal rates of mRNA turnover

Abstract

A MAJOR pathway of messenger RNA degradation in eukaryotic cells is initiated by shortening of the poly(A) tail, which, at least in yeast, triggers a decapping reaction, thereby exposing the mRNA to 5′→ 3′ degradation1–4. Decapping is the key step in this decay pathway because the transcript body is rapidly degraded following decapping. Accordingly, decapping is the site of numerous controls, including inhibition of decapping by the poly (A) tail3,4 and modulation of mRNA decapping rate by specific sequences3–5. Moreover, a specialized decay pathway that degrades aberrant transcripts triggers rapid mRNA decapping independently of poly (A)-tail shortening6. We have identified a yeast gene, termed DCP1, that encodes the decapping enzyme, or an essential component of a decapping complex. The protein Dcpl is required for the normal decay of many unstable and stable yeast mRNAs, as well as mRNAs that are decapped independently of deadenylation. These results indicate that mRNA-specific rates of decapping, and thus decay, will result from differences in the interaction of the DCP1 decapping enzyme with individual transcripts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Decker, C. J. & Parker, R. Genes Dev. 7, 1632–1643 (1993).

    Article  CAS  Google Scholar 

  2. Hsu, C. L. & Stevens, A. Molec. cell. Biol. 13, 4826–4835 (1993).

    Article  CAS  Google Scholar 

  3. Muhlad, D., Decker, C. J. & Parker, R. Genes Dev. 8, 855–866 (1994).

    Article  Google Scholar 

  4. Muhlrad, D., Decker, C. J. & Parker, R. Molec. cell. Biol. 15, 2145–2156 (1995).

    Article  CAS  Google Scholar 

  5. Muhlrad, D. & Parker, R. Genes Dev. 6, 2100–2111 (1992).

    Article  CAS  Google Scholar 

  6. Muhlrad, D. & Parker, R. Nature 370, 578–581 (1994).

    Article  ADS  CAS  Google Scholar 

  7. Hatfield, L., Beelman, C. A., Stevens, A. & Parker, R. Molec. cell. Biol. (in the press).

  8. Stevens, A. Molec. cell. Biol. 8, 2005–2010 (1988).

    Article  CAS  Google Scholar 

  9. Hochuli, E., Döbeli, H. & Schacher, A. J. Chromatogr. 411, 177–184 (1987).

    Article  CAS  Google Scholar 

  10. Beelman, C. A. & Parker, R. Cell 81, 179–183 (1995).

    Article  CAS  Google Scholar 

  11. Decker, C. J. & Parker, R. Trends biochem. Sci. 19, 336–340 (1994).

    Article  CAS  Google Scholar 

  12. Peltz, S. W., He, F., Welch, E. Jacobson, A. Prog. Nucleic Acids Res. molec. Biol. 17, 271–298 (1994).

    Article  Google Scholar 

  13. He, F. & Jacobson, A. Genes Dev. 9, 437–454 (1995).

    Article  CAS  Google Scholar 

  14. Caponigro, G. & Parker, R. Genes Dev. 9, 2421–2432 (1995).

    Article  CAS  Google Scholar 

  15. Leeds, P., Peltz, S. W., Jacobson, A. & Culbertson, M. R. Genes Dev. 5, 2303–2314 (1991).

    Article  CAS  Google Scholar 

  16. Leeds, P., Wood, J. M., Lee, B. -S. & Culbertson, M. R. Molec. cell. Biol. 12, 2165–2177 (1992).

    Article  CAS  Google Scholar 

  17. Cui, Y., Hagan, K. W., Zhang, S. & Peltz, S. W. Genes Dev. 9, 423–436 (1995).

    Article  CAS  Google Scholar 

  18. Johnson, A. W. & Kolodner, R. D. J. biol. Chem. 266, 14046–14054 (1991).

    CAS  PubMed  Google Scholar 

  19. Mandart, E. & Parker, R. Molec. cell. Biol. 15, 6979–6986 (1995).

    Article  CAS  Google Scholar 

  20. Harris, M. E. et al. EMBO J. 13, 3953–3963 (1994).

    Article  CAS  Google Scholar 

  21. Caponigro, G., Muhlrad, D. & Parker, R. Molec. cell. Biol. 13, 5141–5148 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beelman, C., Stevens, A., Caponigro, G. et al. An essential component of the decapping enzyme required for normal rates of mRNA turnover. Nature 382, 642–646 (1996). https://doi.org/10.1038/382642a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/382642a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing