Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Predator–prey cycles with period shifts between two-and three-species systems

Abstract

POPULATION ecology typically focuses on particular species or pairs of species within webs of interacting species to understand variations in their abundance. Classical theory1–3 predicts multi-generation cycles in predator and prey abundance. These cycles have received considerable attention3–6, although there is an alternative possibility, of prey generation-length cycles in predator–prey interactions7–9. Does observation of either of these patterns depend on how firmly predators and prey are embedded in their web of interactions? Concurrent investigations of predator–prey dynamics both in isolation and within a larger web have been lacking. Here we report observations of the population dynamics of a simple predator–prey system, and also of a three-species system including predator and prey. The dynamic patterns exhibited by both systems are cyclic, but the increase from two to three species gives rise to a marked shift in cycle peroid from one to several host generation lengths.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lotka, A. J. Elements of Physical Biology (Williams and Wilkins, New York, 1925).

    MATH  Google Scholar 

  2. Volterra, V. J. Cons. perm. Int. Explor. Mer 3, 3–51 (1928).

    Article  Google Scholar 

  3. Begon, M., Harper, J. L. & Townsend, C. R. Ecology: Individuals, Populations and Communities 3rd edn (Blackwell Science, Oxford, 1996).

    Google Scholar 

  4. Myers, J. H. Adv. Ecol. Res. 18, 179–242 (1988).

    Article  Google Scholar 

  5. Hanski, I., Turchin, P., Korpimaki, E. & Henttonen, H. Nature 364, 232–235 (1993).

    Article  ADS  CAS  Google Scholar 

  6. Krebs, C. J. et al. Science 269, 1112–1115 (1995).

    Article  ADS  CAS  Google Scholar 

  7. Godfray, H. C. J. & Hassell, M. P. J. Anim. Ecol. 58, 153–174 (1989).

    Article  Google Scholar 

  8. Gordon, D. M., Nisbet, R. M., De Roos, A., Gurney, W. S. C. & Stewart, R. R. J. Anim. Ecol. 60, 295–308 (1991).

    Article  Google Scholar 

  9. Briggs, C. J. & Godfray, H. C. J. Am. Nat. 145, 855–887 (1995).

    Article  Google Scholar 

  10. Sait, S. M. et al. Ecol. Ent. 20, 199–201 (1995).

    Article  Google Scholar 

  11. Harvey, J. A., Harvey, I. F. & Thompson, D. J. Ecology 75, 1420–1428 (1994).

    Article  Google Scholar 

  12. Sait, S. M., Begon, M. & Thompson, D. J. J. invert. Pathol. 63, 107–110 (1994).

    Article  Google Scholar 

  13. Turchin, P. & Taylor, A. D. Ecology 73, 289–305 (1992).

    Article  Google Scholar 

  14. Sait, S. M., Begon, M. & Thompson, D. J. J. Anim. Ecol. 63, 541–550 (1994).

    Article  Google Scholar 

  15. Begon, M., Sait, S. M. & Thompson, D. J. Proc. R. Soc. Lond. B 260, 131–137 (1995).

    Article  ADS  Google Scholar 

  16. Sait, S. M., Begon, M. & Thompson, D. J. J. Anim. Ecol. 63, 861–870 (1994).

    Article  Google Scholar 

  17. Reeve, J. D., Cronin, J. T. & Strong, D. R. J. Anim. Ecol. 63, 912–920 (1994).

    Article  Google Scholar 

  18. Hochberg, M. E., Hassell, M. P. & May, R. M. Am. Nat. 135, 74–94 (1990).

    Article  Google Scholar 

  19. Polis, G. A. & Holt, R. D. Trends Ecol. Evol. 7, 151–154 (1992).

    Article  CAS  Google Scholar 

  20. Holt, R. D. in Multitrophic Interactions (eds Gange, A. C., Brown, V. K. & Jones, T. H.) (Blackwell Science, Oxford, 1996) (in the press).

    Google Scholar 

  21. Begon, M., Bowers, R. G., Sait, S. M. & Thompson, D. J. in Frontiers of Population Ecology (eds Floyd, R. B. & Sheppard, A. W.) (CSIRO Press, Melbourne, 1996) (in the press).

    Book  Google Scholar 

  22. Vandermeer, J. H. Ecology 50, 362–371 (1969).

    Article  Google Scholar 

  23. Wilbur, H. M. & Alford, R. A. Ecology 66, 1106–1114 (1985).

    Article  Google Scholar 

  24. Muratori, S. & Renaldi, S. SIAM J. appl. Math. 52, 1688–1706 (1992).

    Article  MathSciNet  Google Scholar 

  25. Lawler, S. P. & Morin, P. J. Am. Nat. 141, 675–686 (1993).

    Article  CAS  Google Scholar 

  26. Morin, P. J. & Lawler, S. P. A. Rev. Ecol. Syst. 26, 505–529 (1995).

    Article  Google Scholar 

  27. Costantino, R. F., Cushing, J. M., Dennis, B. & Desharnais, R. A. Nature 375, 227–230 (1995).

    Article  ADS  CAS  Google Scholar 

  28. SPSS for Windows: Trends, Release 6.0 (SPSS, Chicago, 1993).

  29. Gurney, W. S. C., Nisbet, R. M. & Lawton, J. H. J. Anim. Ecol. 52, 479–495 (1983).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Begon, M., Sait, S. & Thompson, D. Predator–prey cycles with period shifts between two-and three-species systems. Nature 381, 311–315 (1996). https://doi.org/10.1038/381311a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/381311a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing