Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The structure and dynamics of Jupiter's ring

Abstract

JUPITER'S ring has posed a problem since it was first discovered 15 years ago. Its inner edge flares into a torus, the shape of which has not yet been accurately modelled, although it was recognized early on1–3 that electromagnetic effects might be important in determining the spatial and size distribution of the dust particles comprising the ring. These early models suggested that sulphur and oxygen ions dominate the plasma environment of the ring; as these ions diffuse inwards from Io, they produce negatively charged dust grains in the ring. Here we propose that Jupiter's ionosphere is the dominant source of plasma and that the low plasma density allows ultraviolet radiation from the Sun to photoionize the grains, giving them a positive charge. The resulting gradient in the equilibrium charge distribution transports the grains rapidly—on surprisingly short timescales of hours to days—towards Jupiter. The brightness distribution resulting from this model matches closely the observed brightness distribution, suggesting that our model captures the most important processes that shape this ring.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Consolmagno, G. J. Nature 285, 557–558 (1980).

    Article  ADS  Google Scholar 

  2. Morfill, G. E., Grün, E. & Johnson, T. V. Planet. Space Sci. 28, 1087–1100 (1980).

    Article  ADS  Google Scholar 

  3. Burns, J. A., Schaffer, L. E., Greenberg, R. J. & Showalter, M. R. Nature 316, 115–119 (1985).

    Article  ADS  Google Scholar 

  4. Showalter, M. R., Burns, J. A., Cuzzi, J. N. & Pollack, J. B. Icarus 69, 458–498 (1987).

    Article  ADS  Google Scholar 

  5. Showalter, M. R., Burns, J. A., Cuzzi, J. N. & Pollack, J. B. Nature 316, 526–528 (1985).

    Article  ADS  CAS  Google Scholar 

  6. Luhmann, J. G. & Walker, R. J. Icarus 44, 361–366 (1980).

    Article  ADS  Google Scholar 

  7. Waite, J. H. Jr et al. J. geophys. Res. 88, 6143–6163 (1983).

    Article  ADS  CAS  Google Scholar 

  8. Nagy, A. F., Barakat, A. R. & Schunk, R. W. J. geophys. Res. 91, 351–354 (1986).

    Article  ADS  CAS  Google Scholar 

  9. Morfill, G. E. & Goertz, C. K. Icarus 55, 111–123 (1980).

    Article  ADS  Google Scholar 

  10. Horányi, M., Morfill, G. E. & Grün, E. Nature 363, 144–146 (1993).

    Article  ADS  Google Scholar 

  11. Horányi, M., Morfill, G. E. & Grün, E. J. geophys. Res. 98, 21245–21251 (1993).

    Article  ADS  Google Scholar 

  12. Horányi, M. Geophys. Res. Lett. 21, 1039–1042 (1994).

    Article  ADS  Google Scholar 

  13. Burns, J. A. & Schaffer, L. E. Nature 337, 340–343 (1989).

    Article  ADS  Google Scholar 

  14. Northrop, T. G., Mendis, D. A. & Schaffer, L. E. Icarus 79, 101–115 (1989).

    Article  ADS  Google Scholar 

  15. Havnes, O., Morfill, G. E. & Melandsø, F. Icarus 98, 141–150 (1992).

    Article  ADS  Google Scholar 

  16. Connmey, J. E. P. J. geophys. Res. 98, 18659–18679 (1993).

    Article  ADS  Google Scholar 

  17. Grün, E., Morfill, G. E., Schwhem, G. & Johnson, T. V. Icarus 44, 326–338 (1980).

    Article  ADS  Google Scholar 

  18. Whipple, E. C. Rep. Prog. Phys. 44, 1197–1250 (1981).

    Article  ADS  Google Scholar 

  19. Ip, W.-H. J. geophys. Res. 88, 819–822 (1983).

    Article  ADS  CAS  Google Scholar 

  20. Cuzzi, J. N. & Durisen, R. H. Icarus 84, 467–501 (1990).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horányi, M., Cravens, T. The structure and dynamics of Jupiter's ring. Nature 381, 293–295 (1996). https://doi.org/10.1038/381293a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/381293a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing