Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Role of intercellular interactions in heterosynaptic long-term depression

Abstract

BIDIRECTIONAL control of synaptic strength is thought to be important for the development of neuronal circuits and information storage. The demonstration of homosynaptic long-term depression1 greatly enhances the usefulness of the synapse as a mnemonic device, but theoreticians have also seen the need for heterosynaptic decreases in synaptic efficacy, both in neuronal development2–4 and information storage5. Indeed, induction of long-term potentiation in one population of synapses can be associated with a modest depression at neighbouring inactive synapses in the same population of cells6–10. Here we report that in the CA1 region of the hippocampus this heterosynaptic long-term depression has the property that its sites of induction and expression occur in different populations of cells and thus requires the spread of a signal between neurons. Such a mechanism ensures a widespread distribution of this form of plasticity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bear, M. F. & Malenka, R. C. Curr. Opin. Neurobiol. 4, 389–399 (1994).

    Article  CAS  Google Scholar 

  2. Artola, A. & Singer, W. Trends Neurosci. 16, 480–487 (1993).

    Article  CAS  Google Scholar 

  3. Collingridge, G. L. & Singer, W. Trends pharmac. Sci. 11, 290–296 (1990).

    Article  CAS  Google Scholar 

  4. Stent, G. S. Proc. natn. Acad. Sci. U.S.A. 70, 997–1001 (1973).

    Article  ADS  CAS  Google Scholar 

  5. Sejnowski, T. J. J. theor. Biol. 69, 385–389 (1977).

    Article  CAS  Google Scholar 

  6. Linden, D. J. & Connor, J. A. A. Rev. Neurosci. 18, 319–357 (1995).

    Article  CAS  Google Scholar 

  7. Christie, B. R., Kerr, S. & Abraham, W. C. Hippocampus 4, 127–135 (1994).

    Article  CAS  Google Scholar 

  8. Lynch, G. S., Dunwiddie, T. & Gribkoff, V. Nature 266, 737–739 (1977).

    Article  ADS  CAS  Google Scholar 

  9. Castro-Alamancos, M. A., Donoghue, J. P. & Connors, B. W. J. Neurosci. 15, 5324–5333 (1995).

    Article  CAS  Google Scholar 

  10. Desmond, N. L., Colbert, C. M., Zhang, D. X. & Levy, W. B. Brain Res. 552, 93–98 (1991).

    Article  CAS  Google Scholar 

  11. Grover, L. M. & Teyler, T. J. Neurosci. Lett. 154, 39–42 (1993).

    Article  CAS  Google Scholar 

  12. Manzoni, O. J., Manabe, T. & Nicoll, R. A. Science 265, 2098–2101 (1994).

    Article  ADS  CAS  Google Scholar 

  13. Wickens, J. R. & Abraham, W. C. Neurosci. Lett. 130, 128–132 (1991).

    Article  CAS  Google Scholar 

  14. Mulkey, R. M. & Malenka, R. C. Neuron 9, 967–975 (1992).

    Article  CAS  Google Scholar 

  15. Sah, P., Hestrin, S. & Nicoll, R. A. Science 246, 815–818 (1989).

    Article  ADS  CAS  Google Scholar 

  16. Boulton, C. L. et al. Eur. J. Neurosci. 6, 1528–1535 (1994).

    Article  CAS  Google Scholar 

  17. Baskys, A. & Malenka, R. C. J. Physiol., Lond. 444, 687–701 (1991).

    Article  CAS  Google Scholar 

  18. Muller, D., Hefft, S. & Figurov, A. Neuron 14, 599–605 (1995).

    Article  CAS  Google Scholar 

  19. Mulkey, R. M., Herron, C. E. & Malenka, R. C. Science 261, 1051–1055 (1993).

    Article  ADS  CAS  Google Scholar 

  20. Chan, C. P., McNall, S. J., Krebs, E. G. & Fischer, E. H. Proc. natn. Acad. Sci. U.S.A. 85, 6257–6261 (1988).

    Article  ADS  CAS  Google Scholar 

  21. Bonhoeffer, T., Staiger, V. & Aertsen, A. Proc. natn. Acad. Sci. U.S.A. 86, 8113–8117 (1989).

    Article  ADS  CAS  Google Scholar 

  22. Schuman, E. M. & Madison, D. V. Science 263, 532–536 (1994).

    Article  ADS  CAS  Google Scholar 

  23. Wigström, H. & Gustafsson, B. Nature 301, 603–604 (1983).

    Article  ADS  Google Scholar 

  24. Schreurs, B. G. & Alkon, D. L. Brain Res. 631, 235–240 (1993).

    Article  CAS  Google Scholar 

  25. Martin, K. A. C. Q. J. exp. Physiol. 73, 637–702 (1988).

    Article  ADS  CAS  Google Scholar 

  26. Wilson, M. A. & McNaughton, B. L. Science 261, 1055–1058 (1993).

    Article  ADS  CAS  Google Scholar 

  27. Castillo, P. E., Weisskopf, M. G. & Nicoll, R. A. Neuron 12, 261–269 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scanziani, M., Malenka, R. & Nicoll, R. Role of intercellular interactions in heterosynaptic long-term depression. Nature 380, 446–450 (1996). https://doi.org/10.1038/380446a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/380446a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing