Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A 4-Gyr shock age for a martian meteorite and implications for the cratering history of Mars

Abstract

ANALYSES of meteorites that originated on Mars provide important insights into the geological and atmospheric evolution of the planet. Such analyses have hitherto been restricted to relatively young martian rocks1 (the oldest martian meteorites have an age of approximately 1.3 billion years). But the recently recognized2 martian meteorite, Allan Hills 84001, which is distinct from the other martian meteorites2–4, shows evidence for a much older age5,6. Here we report an analysis of the shock-alteration history of this meteorite based on argon isotope dating, from which we derive a shock age of 4.0 ± 0.1 billion years. The age and geological history of this meteorite suggest that it came from the heavily cratered Noachian-age terrains of Mars's southern hemisphere, and it may thus provide an absolute chronology for this region of the planet, independent of that inferred from the cratering record. The shock age of the meteorite also coincides with that of the so-called Lunar Cataclysm (a relatively short period during which many of the craters on the Moon are believed to have formed), supporting the idea7 that intense bombardment was widespread throughout the inner Solar System between 3.9 and 4.1 billion years ago.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. McSween, H. Y. Jr Meteoritics 29, 757–779 (1994).

    Article  ADS  CAS  Google Scholar 

  2. Mittlefeldt, D. W. Meteoritics 29, 214–221 (1994).

    Article  ADS  Google Scholar 

  3. Trieman, A. H. Meteoritics 30, 294–302 (1995).

    Article  ADS  Google Scholar 

  4. Rornanek, C. S. et al. Nature 372, 655–657 (1994).

    Article  ADS  Google Scholar 

  5. Jagoutz, E., Sorowka, A., Vogel, J. D. & Wänke, H. Meteoritics 29, 478–479 (1994).

    ADS  Google Scholar 

  6. Nyquist, L. E., Bansal, B. M., Wiesmann, H. & Shih, C.-Y. Lunar planet Sci. XXVI, 1065–1066 (1995).

    ADS  Google Scholar 

  7. Bogard, D. D. Meteoritics 30, 244–268 (1995).

    Article  ADS  CAS  Google Scholar 

  8. Neukum, G. & Hiller, K. J. geophys. Res. 86, 3097–3121 (1981).

    Article  ADS  Google Scholar 

  9. Hartmann, W. K. J. geophys. Res. 78, 4096–4116 (1973).

    Article  ADS  Google Scholar 

  10. Neukum, G. & Wise, D. U. Science 194, 1381–1387 (1976).

    Article  ADS  CAS  Google Scholar 

  11. Tera, F., Papanastassiou, D. A. & Wasserburg, G. J. Earth planet. Sci. Lett. 22, 1–21 (1974).

    Article  ADS  CAS  Google Scholar 

  12. Turner, G. Phys. Chem. Earth 10, 145–195 (1977).

    ADS  CAS  Google Scholar 

  13. Ryder, G. Lunar planet. Sci. XX, 934–935 (1989).

    ADS  Google Scholar 

  14. Strom, R. G., Croft, S. K. & Barlow, N. G. in Mars (eds Kieffer, H. H., Jakosky, B. M., Snyder, C. W. & Matthews, M. S.) 383–423 (Univ. Arizona Press, Tucson, 1992).

    Google Scholar 

  15. Turner, G. in Meteorites and the Early Solar System (eds Kerridge, J. F. & Matthews, M. S.) 276–288 (Univ. Arizona Press, Tucson, 1988).

    Google Scholar 

  16. Miura, Y. N., Nagao, K., Sugiura, N., Sagawa, H. & Matsubara, K. Geochim. cosmochim. Acta 59, 2105–2114 (1995).

    Article  ADS  CAS  Google Scholar 

  17. Swindle, T. D., Grier, J. A. & Burkland, M. K. Geochim. cosmochim. Acta 59, 793–801 (1995).

    Article  ADS  CAS  Google Scholar 

  18. Mittlefeldt, D. W. Meteoritics 29, 900 (1994).

    Article  Google Scholar 

  19. Drake, M. J. in Asteroids (ed. Gehrels, T.) 765–782 (Univ. Arizona Press, Tuscon, 1988).

    Google Scholar 

  20. Binzel, R. P. Meteoritics 30, 486–487 (1995).

    ADS  Google Scholar 

  21. Swindle, T. D., Caffee, M. W. & Hohenberg, C. M. Geochim. cosmochim. Acta 50, 1001–1025 (1986).

    Article  ADS  CAS  Google Scholar 

  22. Knott, S. F., Ash, R. D. & Turner, G. Lunar planet. Sci. XXVI, 765–766 (1995).

    ADS  Google Scholar 

  23. Bogard, D. D., Husain, L. & Nyquist, L. E. Geochim. cosmochim. Acta 43, 1047–1055 (1979).

    Article  ADS  CAS  Google Scholar 

  24. Shih, C.-Y. et al. Geochim. cosmochim. Acta 46, 2323–2344 (1982).

    Article  ADS  CAS  Google Scholar 

  25. Podosek, F. A. Earth planet. Sci. Lett. 19, 135–144 (1973).

    Article  ADS  CAS  Google Scholar 

  26. Bogard, D. D. & Husain, L. Geophys. Res. Lett. 4, 49–71 (1977).

    Article  ADS  Google Scholar 

  27. Bogard, D. D. & Nyquist, L. E. Meteoritics 14, 356 (1979).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ash, R., Knott, S. & Turner, G. A 4-Gyr shock age for a martian meteorite and implications for the cratering history of Mars. Nature 380, 57–59 (1996). https://doi.org/10.1038/380057a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/380057a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing