Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Effects of clouds and stratospheric ozone depletion on ultraviolet radiation trends

Abstract

ANTHROPOGENIC depletion of ozone in the lower stratosphere has been of global environmental concern for two decades, but the environmentally relevant quantity—the flux of solar ultraviolet radiation (UVR) reaching the Earth's surface—remains poorly quantified on a global basis. The three most important parameters governing surface UVR fluxes and trends are solar elevation, total vertically integrated ozone abundance and cloud opacity. Here we use global satellite measurements of total ozone abundance and cloud reflectance to examine how the trends in UVR resulting from established trends in total ozone abundance1,2 compare with the potentially large natural variability in UVR that results from variations in cloud opacity. We find that throughout many temperate regions—including large parts of continental Europe, North and South America, New Zealand, Australia and southern Africa—interannual variability in cloud opacity is sufficiently small that by the end of this century, trends in summer average local-noon UVR dose rates relevant to mammalian skin cancer or plant damage should be significant with respect to cloud variability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bojkov, R., Bishop, L., Hill, W. J., Reinsel, G. C. & Tiao, G. C. J. geophys. Res. 95, 9785–9807 (1990).

    Article  ADS  Google Scholar 

  2. Niu, X., Frederick, J. E., Stein, M. L. & Tiao, G. C. J. geophys. Res. 97, 14661–14669 (1992).

    Article  ADS  Google Scholar 

  3. Stolarski, R. S., Bloomfield, P. & McPeters, R. D. Geophs. Res. Lett. 18, 1015–1018 (1991).

    Article  ADS  CAS  Google Scholar 

  4. Ramanathan, V. et al. Science 243, 57–63 (1989).

    Article  ADS  CAS  Google Scholar 

  5. Joseph, J. H., Wiscombe, W. J. & Weinman, J. A. J. atmos. Sci. 33, 2453–2459 (1976).

    Article  ADS  Google Scholar 

  6. Li, Z. & Garand, L. J. geophys. Res. 99, 8335–8350 (1994).

    Article  ADS  Google Scholar 

  7. Briegleb, B. P. J. geophys. Res. 97, 7603–7612 (1992).

    Article  ADS  Google Scholar 

  8. Wittmeyer, I. L. & Vonder Haar, T. H. J. Clim. 7, 326–333 (1994).

    Article  ADS  Google Scholar 

  9. Lubin, D., Ricchiazzi, P., Gautier, C. & Whritner, R. H. in Ultraviolet Radiation in Antarctica: Measurements and Biological Effects (eds Weiler, S. & Penhale, P.) 53–81 (Antarctic Res. Ser. Vol. 62, Am. Geophys. Union, Washington DC, 1994).

    Book  Google Scholar 

  10. Madronich, S. in Environmental UV Photobiology (eds Young, A. R., Björn, L. O., Moan, J. & Nultsch, W.) 1–39 (Plenum, New York. 1993).

    Book  Google Scholar 

  11. Cole, C. A., Forbes, D. & Davies, R. E. Photochem. Photobiol. 43, 275–284 (1986).

    Article  CAS  Google Scholar 

  12. Quaite, F. E., Sutherland, B. M. & Sutherland, J. C. Nature 358, 576–578 (1992).

    Article  ADS  CAS  Google Scholar 

  13. Frederick, J. E. & Lubin, D. J. geophys. Res. 93, 3825–3832 (1988).

    Article  ADS  Google Scholar 

  14. Eck, T. F., Bhartia, P. K. & Kerr, J. B. Geophys. Res. Lett. 22, 611–614 (1995).

    Article  ADS  CAS  Google Scholar 

  15. Gleason, J. F. et al. Science 260, 523–526 (1993).

    Article  ADS  CAS  Google Scholar 

  16. Brühl, C. & Crutzen, P. J. Geophys. Res. Lett. 16, 703–706 (1989).

    Article  ADS  Google Scholar 

  17. Lubin, D. et al. J. geophys. Res. 97, 7817–7828 (1992).

    Article  ADS  CAS  Google Scholar 

  18. Stamnes, K., Slusser, J., Bowen, M., Booth, C. R. & Lucas, T. Geophys. Res. Lett. 17, 2181–2184 (1990).

    Article  ADS  Google Scholar 

  19. Seckmeyer, G. et al. Geophys. Res. Lett. 22, 1889–1892 (1995).

    Article  ADS  Google Scholar 

  20. Madronich, S. Geophys. Res. Lett. 19, 37–40 (1992).

    Article  ADS  CAS  Google Scholar 

  21. Blumthaler, M. & Ambach, W. Science 248, 206–208 (1990).

    Article  ADS  CAS  Google Scholar 

  22. Liou, K. N. Radiation and Cloud Processes in the Atmosphere 305–307 (Oxford Univ. Press, 1992).

    Google Scholar 

  23. Pilewskie, P. & Valero, F. P. J. Science 267, 1626–1629 (1995).

    Article  ADS  CAS  Google Scholar 

  24. Li, Z., Barker, H. W. & Moreau, L. Nature 376, 486–490 (1995).

    Article  ADS  CAS  Google Scholar 

  25. Ramanathan, V. & Collins, W. Nature 351, 27–32 (1991).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lubin, ., Jensen, E. Effects of clouds and stratospheric ozone depletion on ultraviolet radiation trends. Nature 377, 710–713 (1995). https://doi.org/10.1038/377710a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/377710a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing