Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Near-coeval formation of the Galactic bulge and halo inferred from globular cluster ages

Abstract

THE morphology of our Galaxy is characterized by a disk of stars moving on circular orbits, surrounding a central spheroidal body of stars on high-velocity, randomly oriented orbits. The spheroid is further differentiated into an inner bulge and an outer halo; the bulge stars are rich in elements heavier than helium ('metals'), whereas the halo stars are metal-poor, suggesting that the latter formed very early in the history of the Galaxy. (They have experienced little chemical enrichment, by previous generations of stars.) It is not known, however, whether the bulge is the inner extension of the halo, having formed as part of the same process1, or whether it formed much later, perhaps by a dynamical distortion of the inner regions of the disk2,3. Here we report observations obtained with the Hubble Space Telescope of two metal-rich globular clusters that form part of the bulge population. Within the uncertainties, these bulge globular clusters appear to be coeval with halo clusters, which suggests that the formation of the bulge was part of the dynamical process that formed the halo, and that the bulge gas underwent rapid chemical enrichment, in less than a few billion years.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Eggen, O. J., Lynden-Bell, D. & Sandage, A. Astrophys. J. 136, 748–766 (1962).

    Article  ADS  Google Scholar 

  2. Raha, N., Sellwood, J. A., James, R. A. & Kahn, F. D. Nature 352, 411–412 (1991).

    Article  ADS  Google Scholar 

  3. Pfenniger, D. & Friedli, D. Astr. Astrophys. 252, 75–93 (1991).

    ADS  Google Scholar 

  4. Larson, R. B. Mon. Not. R. astr. Soc. 173, 671–699 (1975).

    Article  ADS  Google Scholar 

  5. Renzini, A. & Greggio, L. in Bulges of Galaxies 47–63 (eds Jarvis, B. J. & Terndrup, D. M.) (Conf. & Workshop Ser. 35, ESO, Garching, 1990).

    Google Scholar 

  6. Larson, R. B. Publs astr. Soc. Pacif. 102, 709–722 (1990).

    Article  ADS  Google Scholar 

  7. Lee, Y.-W. Astr. J. 104, 1780–1789 (1992).

    Article  ADS  Google Scholar 

  8. Renzini, A. in Galactic Bulges 151–168 (eds Dejonghe, H. & Habing, H. J.) (IAU Symp. 153, Kluwer, Dordrecht, 1993).

    Book  Google Scholar 

  9. Rich, R. M. Mem. Soc. Astr. It. 56, 23–35 (1985).

    ADS  CAS  Google Scholar 

  10. Frogel, J. A. A. Rev. Astr. Astrophys. 26, 51–92 (1988).

    Article  ADS  CAS  Google Scholar 

  11. Terndrup, D. M. Astr. J. 96, 884–908 (1988).

    Article  ADS  CAS  Google Scholar 

  12. Whitelock, P., Feast, M. & Catchpole, R. Mon. Not. R. astr. Soc. 248, 276–312 (1991).

    Article  ADS  CAS  Google Scholar 

  13. Holzman, J. A. et al. Astr. J. 106, 1826–1838 (1993).

    Article  ADS  Google Scholar 

  14. Paczyński, B. et al. Astr. J. 107, 2060–2066 (1994).

    Article  ADS  Google Scholar 

  15. Renzini, A. Astr. Astrophys. 285, L5–L8 (1994).

    ADS  CAS  Google Scholar 

  16. Zinn, R. Astropnys. J. 293, 424–444 (1985).

    Article  ADS  CAS  Google Scholar 

  17. Barbuy, B., Castro, S., Ortolani, S. & Bica, E. Astr. Astrophys. 259, 607–613 (1992).

    ADS  CAS  Google Scholar 

  18. Cohen, J. G. & Sleeper, C. Astr. J. 109, 242–263 (1995).

    Article  ADS  CAS  Google Scholar 

  19. McWilliam, A. & Rich, R. M. Astrophys. J. Suppl. Ser. 91, 749–791 (1994).

    Article  ADS  CAS  Google Scholar 

  20. Hesser, J. E., Shawl, S. J. & Meyer, J. E. Publs Astr. Soc. Pacif. 98, 403–422 (1986).

    Article  ADS  Google Scholar 

  21. Minniti, D. Astr. J. 109, 1663–1669 (1995).

    Article  ADS  Google Scholar 

  22. Renzini, A. in Observational Tests of Cosmological Inflation 131–146 (eds Shanks, T. et al.) (Kluwer, Dordrecht, 1991).

    Book  Google Scholar 

  23. Garnavich, P. M., VandenBerg, D. A., Zurek, D. R. & Hesser, J. E. Astr. J. 107, 1097–1110 (1994).

    Article  ADS  CAS  Google Scholar 

  24. Sandage, A. & Cacciari, C. Astrophys. J. 350, 645–661 (1990).

    Article  ADS  CAS  Google Scholar 

  25. Walker, A. R. Astrophys. J. 390, L81–L84 (1992).

    Article  ADS  Google Scholar 

  26. Carney, B. Mem. Soc. Astr. It. 63, 409–431 (1992).

    ADS  CAS  Google Scholar 

  27. Stetson, P. Publs Astr. Soc. Pacif. 99, 191–222 (1987).

    Article  ADS  Google Scholar 

  28. Sellwood, J. & Sanders, R. Mon. Not. R. astr. Soc. 233, 611–620 (1988).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ortolani, S., Renzini, ., Gilmozzi, R. et al. Near-coeval formation of the Galactic bulge and halo inferred from globular cluster ages. Nature 377, 701–704 (1995). https://doi.org/10.1038/377701a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/377701a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing