Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Nitrogen content of the mantle inferred from N2–Ar correlation in oceanic basalts

Abstract

RARE gases have proved to be particularly useful in modelling the early evolution of the Earth's atmosphere1–3. But it is not straightforward to extend this approach to the main volatile species (such as hydrogen, carbon and nitrogen) that comprise the atmosphere, hydrosphere and sediments, as these elements are chemically reactive and may have experienced different geodynamic histories. A way around this problem is to calibrate major volatile species relative to rare gases4–8. Here I use a recently developed static mass spectrometry method that allows simultaneous analysis of nitrogen, carbon, helium and argon9 to analyse gases trapped in vesicles of mid-ocean-ridge basalt glasses. The results show that the abundances of N2 and 40Ar (a radiogenic isotope that has been produced through geological time by the decay of 40K in the solid Earth) correlate well over several orders of magnitude, suggesting that the N2/40Ar ratio in the mantle source is near-constant and comparable to the present-day atmospheric value. In contrast, the inferred mantle N2/36Ar ratio (where 36Ar is a primordial isotope of argon) is two orders of magnitude higher than the atmospheric ratio. This observation, when combined with argon isotope systematics, allows a better estimate to be made of the nitrogen content of the mantle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ozima, M. & Podosek, F. A. Noble Gas Geochemistry (Cambridge Univ. Press, 1983).

    Google Scholar 

  2. Allègre, C. J., Staudacher, T. & Sarda, P. Earth planet. Sci. Lett. 81, 127–150 (1987).

    Article  ADS  Google Scholar 

  3. Azbel, I. Ya & Tolstikhin, I. N. Geochim. cosmochim, Acta 54, 139–154 (1993).

    Article  ADS  Google Scholar 

  4. Zhang, Y. & Zindler, A. Earth planet. Sci. Lett. 117, 331–345 (1993).

    Article  ADS  CAS  Google Scholar 

  5. Des Marais, D. J. in The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present (eds Sundquist, E. T. & Broecker, W. S.) 602–611 (Geophys. Monogr. publ. 32, 1985).

    Google Scholar 

  6. Marty, B. & Jambon, A. Earth planet. Sci. Lett. 83, 16–26 (1987).

    Article  ADS  CAS  Google Scholar 

  7. O'Nions, R. K. & Oxburgh, E. R. Earth planet. Sci. Lett. 90, 331–347 (1988).

    Article  ADS  CAS  Google Scholar 

  8. Trull, T., Nadeau, S., Pineau, F., Polvé, M. & Javoy, M. Earth planet. Sci. Lett. 118, 43–64 (1993).

    Article  ADS  CAS  Google Scholar 

  9. Marty, B. Lenoble, M. & Vassard, N. Chem. Geol. (Isotope Geosci.) 120, 183–195 (1995).

    ADS  CAS  Google Scholar 

  10. Sakai, H., Des Marais, D. J., Ueda, A. & Moore, J. G. Geochim. cosmochim. Acta 48, 2433–2441 (1984).

    Article  ADS  CAS  Google Scholar 

  11. Exley, R. A., Boyd, S. R., Mattey, D. P. & Pillinger, C. T. Earth planet. Sci. Lett. 81, 163–174 (1987).

    Article  ADS  CAS  Google Scholar 

  12. Javoy, M. & Pineau, F. Earth. planet. Sci. Lett. 107, 598–611 (1991).

    Article  ADS  CAS  Google Scholar 

  13. Carroll, M. R. & Draper, D. S. Chem. Geol. 117, 37–56 (1994).

    Article  ADS  CAS  Google Scholar 

  14. Craig, H., Clarke, W. B. & Beg, M. A. Earth planet. Sci. Lett. 26, 125–132 (1975).

    Article  ADS  CAS  Google Scholar 

  15. Jambon, A., Weber, H. & Braun, O. Geochim. cosmochim. Acta. 50, 401–408 (1986).

    Article  ADS  CAS  Google Scholar 

  16. Holloway, J. R. & Blank, J. G. in Volatiles In Magmas (eds Carroll, M. R. & Holloway, J. R.) 187–230 (Rev. Miner. 30, 1994).

    Book  Google Scholar 

  17. Kingsley, R. H. & Schilling, J. G. Earth planet. Sci. Lett. 129, 31–53 (1995).

    Article  ADS  CAS  Google Scholar 

  18. Anders, E. & Owen, T. Science 198, 453–465 (1977).

    Article  ADS  CAS  Google Scholar 

  19. Javoy, M., Pineau, F. & Delorme, H. Chem. Geol. 57, 41–62 (1986).

    Article  ADS  CAS  Google Scholar 

  20. Staudacher, T. et al. Earth planet. Sci. Lett. 96, 119–133 (1989).

    Article  ADS  CAS  Google Scholar 

  21. Wlotzka, F. in Handbook of Geochemistry (ed. Wedepohl, K.) 7-0-1–7-0-3 (Springer, Berlin. 1972).

    Google Scholar 

  22. Bebout, G. E. & Fogel, M. L. Geochim. cosmochim. Acta. 56, 2839–2850 (1992).

    Article  ADS  CAS  Google Scholar 

  23. Boyd, S. R. & Pillinger, C. T. Chem. Geol. 116, 43–59 (1994).

    Article  ADS  CAS  Google Scholar 

  24. Beaumont, V., Javoy, M. & Robert, F. in 8th Int. Conf. Geochim. Cosmocchron. Isot. Geol., Abstr. (eds Lanphere, M. A., Dalrymple, G. B. & Turrin, B. D.) 23 (U.S. Geol. Surv. Circ. 1107, U.S. Geol. Surv., 1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marty, B. Nitrogen content of the mantle inferred from N2–Ar correlation in oceanic basalts. Nature 377, 326–329 (1995). https://doi.org/10.1038/377326a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/377326a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing