Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Atmospheric inputs of dissolved organic nitrogen to the oceans

Abstract

THE input of fixed nitrogen to the oceans by in situ fixation, river/groundwater supply and atmospheric deposition represents an important control on marine productivity on long timescales, and hence on oceaná¤-atmosphere CO2 exchange and its effects on climate1á¤-3. Any assessment of human perturbation of the global nitrogen cycle also requires an accurate estimate of these inputs. The current best estimates suggest that the natural fluvial and atmospheric inputs are of similar magnitude3,4, and that globally both have been increased by a factor of two above natural levels as a result of human activity3á¤-5. Dissolved organic nitrogen represents more than half of the fluvial input of dissolved fixed nitrogen, but current estimates of atmospheric inputs are usually based on only the inorganic (NO3- + NH4+) component, although some authors have recognized the potential importance of organic nitrogen6á¤-9. Here we present analyses of dissolved organic nitrogen in rain and snow which show that it is a ubiquitous and significant component of precipitation, even in remote marine areas. Our results require an approximate doubling of present estimates of the atmospheric input of fixed nitrogen to the oceans, and an increase in estimates of the total fixed-nitrogen input by a factor of about 1.5. These results indicate that the human impact on the global nitrogen cycle may be larger than has been thought.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Codispoti, L. A. in Productivity of the Ocean: Present and Past (eds Berger, W. H., Smetacek, V. S. & Wefer, G.) 377–394 (Dahlem Workshop Rep. 44, Wiley, Chichester, 1989).

    Google Scholar 

  2. Mackenzie, F. T., Ver, L. M., Sabine, C., Lane, M. & Lerman, A. in Interactions of C, N, P, and S Biogeochemical Cycles and Global Change (eds Wollast, R., Mackenzie, F. T. & Chou, L.) 1–62 (NATO ASI Ser. 14, Springer, Berlin, 1993).

    Book  Google Scholar 

  3. Galloway, J. N., Schlesinger, W. H., Levy, H., Michaels, A. & Schnoor, J. L. Globl Biogeochem. Cycles 9, 235–252 (1995).

    Article  ADS  CAS  Google Scholar 

  4. Duce, R. A. et al. Globl Biogeochem. Cycles 5, 193–259 (1991).

    Article  ADS  CAS  Google Scholar 

  5. Prospero, J. & Savoie, D. Nature 339, 687–689 (1989).

    Article  ADS  CAS  Google Scholar 

  6. Owens, N. J. P., Galloway, J. N. & Duce, R. A. Nature 357, 397–399 (1992).

    Article  ADS  CAS  Google Scholar 

  7. Michaels, A. F., Siegel, D. A., Johnson, R. F., Knap, A. H. & Galloway, J. N. Globl Biogeochem. Cycles 7, 339–351 (1993).

    Article  ADS  CAS  Google Scholar 

  8. Knap, A. H., Jickells, T. D., Pszenny, A. & Galloway, J. N. Nature 320, 158–160 (1986).

    Article  ADS  CAS  Google Scholar 

  9. Duce, R. A. in The Role of Air-Sea Exchange in Geochemical Cycling (ed. Buat-Ménard, P.) 497–529 (Reidel, Dordrecht, 1986).

    Book  Google Scholar 

  10. Hopkinson, C. et al. Mar. Chem. 41, 23–36 (1993).

    Article  CAS  Google Scholar 

  11. Novakov, T. & Penner, J. E. Nature 365, 823–826 (1993).

    Article  ADS  CAS  Google Scholar 

  12. Timperley, M. H., Vigor-Brown, R. J., Kawashima, M. & Ishigami, M. Can. J. aquat. Sci. 42, 1171–1177 (1985).

    Article  CAS  Google Scholar 

  13. Dod, R. L., Grundel, R. A., Benner, W. H. & Novakov, T. Sci. tot. Envir. 36, 277–282 (1984).

    Article  CAS  Google Scholar 

  14. Bank, S. & Castillo, R. Geophys. Res. Lett 14, 210–212 (1987).

    Article  ADS  Google Scholar 

  15. Mopper, K. & Zika, R. G. Nature 325, 246–249 (1987).

    Article  ADS  CAS  Google Scholar 

  16. Gorzelska, K. & Galloway, J. N. Globl Biogeochem. Cycles 4, 309–334 (1990).

    Article  ADS  CAS  Google Scholar 

  17. Milne, P. J. & Zika, R. G. J. atmos. Chem. 16, 361–398 (1993).

    Article  CAS  Google Scholar 

  18. Gibb, S. W. thesis, Univ. East Anglia (1994).

  19. Likens, G. E., Edgerton, E. S. & Galloway, J. N. Tellus 35, 16–24 (1983).

    Article  Google Scholar 

  20. Savoie, D. L. et al. J. atmos. Chem. 17, 95–122 (1993).

    Article  MathSciNet  CAS  Google Scholar 

  21. Nichols, K. H. & Cox, C. M. Wat. Resour. Res. 14, 589–592 (1978).

    Article  ADS  Google Scholar 

  22. Brimblecombe, P. et al. Wat. Res. 22, 693–700 (1988).

    Article  CAS  Google Scholar 

  23. Buat-Ménard, P., Cachier, H. & Chesselet, R. in Chemical Oceanography Vol. 10 (eds Riley, J. P., Chester, R. & Duce, R. A.) (Academic, London, 1989).

    Google Scholar 

  24. Freyer, H. D. Tellus 30, 83–92 (1979).

    ADS  Google Scholar 

  25. Heaton, T. H. E. Tellus 42B, 304–307 (1990).

    ADS  CAS  Google Scholar 

  26. Heaton, T. H. E. Chem. Geol. 59, 87–102 (1986).

    Article  CAS  Google Scholar 

  27. Duce, R. A. et al. Rev. Geophys. Space Phys. 21, 921–952 (1983).

    Article  ADS  CAS  Google Scholar 

  28. Chang, S. G. & Novakov, T. Atmos. Envir. 9, 495–504 (1975).

    Article  CAS  Google Scholar 

  29. Hurst, D. F., Griffith, D. W. T. & Cook, G. D. J. geophys. Res. 99, 16441–16456 (1994).

    Article  ADS  CAS  Google Scholar 

  30. Rendell, A. R., Ottley, C. J., Jickells, T. D. & Harrison, R. M. Tellus 45, 53–63 (1993).

    Article  Google Scholar 

  31. Lewis, W. M. Wat. Resour. Res. 17, 169–181 (1981).

    Article  ADS  CAS  Google Scholar 

  32. Hendry, C. D. & Brezonik, P. L. Envir. Sci. Technol. 14, 843–849 (1980).

    Article  ADS  CAS  Google Scholar 

  33. Capone, D. G. & Carpenter, E. J. Science 217, 1140–1142 (1982).

    Article  ADS  CAS  Google Scholar 

  34. Durka, W., Schulze, E.-D., Gebauer, G. & Voerkelius, S. Nature 372, 765–767 (1994).

    Article  ADS  CAS  Google Scholar 

  35. Fogel, M. L. & Paerl, H. W. Chem. Geol. 107, 233–236 (1993).

    Article  ADS  Google Scholar 

  36. Altabet, M. A., Deuser, W. G., Honjo, S. & Stienen, C. Nature 354, 136–139 (1991).

    Article  ADS  Google Scholar 

  37. Nakatsuka, T., Handa, N., Wada, E. & Wong, C. S. J. mar. Res. 50, 267–296 (1992).

    Article  CAS  Google Scholar 

  38. Owens, N. J. P. Adv. mar. Biol. 24, 389–451 (1987).

    Article  Google Scholar 

  39. Hoering, T. C. Geochim. cosmochim. Acta 12, 97–102 (1957).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cornell, S., Randell, A. & Jickells, T. Atmospheric inputs of dissolved organic nitrogen to the oceans. Nature 376, 243–246 (1995). https://doi.org/10.1038/376243a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/376243a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing