Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Polarization of both major body axes in Drosophila by gurken-torpedo signalling

Abstract

Anterior–posterior polarity in Drosophila arises from the movement of the oocyte to the posterior of the egg chamber, and the subsequent acquisition of posterior fate by the adjacent somatic follicle cells. We demonstrate that gurken is necessary in the oocyte and torpedo/DER in the follicle cells for the induction of posterior fate. As the gurken–torpedo/DER pathway also establishes dorsoventral polarity later in oogenesis, Drosophila uses the same germline to same signalling pathway to determine both embryonic axes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Spradling, A. in The Development of Drosophila melanogaster (eds Bate, M. & Martínez-Arias, A.) 1–70 (Cold Spring Harbor Laboratory Press, New York, 1993).

    Google Scholar 

  2. González-Reyes, A. & St Johnston, D. Science 266, 639–642 (1994).

    Article  ADS  Google Scholar 

  3. Ruohola, H. et al. Cell 66, 433–449 (1991).

    Article  CAS  Google Scholar 

  4. Lane, M. & Kalderon, D. Genes Dev. 8, 2986–2995 (1994).

    Article  CAS  Google Scholar 

  5. Theurkauf, W., Smiley, S., Wong, M. & Alberts, B. Development 115, 923–936 (1992).

    CAS  Google Scholar 

  6. Clark, I., Giniger, E., Ruohola-Baker, H., Jan, L. & Jan, Y. Curr. Biol. 4, 289–300 (1994).

    Article  CAS  Google Scholar 

  7. St Johnston, D., Driever, W., Berleth, T., Richstein, S. & Nüsslein-Volhard, C. Development (Suppl.) 107, 13–19 (1989).

    CAS  Google Scholar 

  8. Pokrywka, N. J. & Stephenson, E. C. Development 113, 55–66 (1991).

    CAS  Google Scholar 

  9. Ephrussi, A., Dickinson, L. K. & Lehmann, R. Cell 66, 37–50 (1991).

    Article  CAS  Google Scholar 

  10. Kim-Ha, J., Smith, J. L. & Macdonald, P. M. Cell 66, 23–35 (1991).

    Article  CAS  Google Scholar 

  11. Driever, W. in The Development of Drosophila melanogaster (eds Bate, M. & Martínez-Arias, A.) 301–324 (Cold Spring Harbor Laboratory Press, New York, 1993).

    Google Scholar 

  12. Ephrussi, A. & Lehmann, R. Nature 358, 387–392 (1992).

    Article  ADS  CAS  Google Scholar 

  13. Schüpbach, T. Cell 49, 699–707 (1987).

    Article  Google Scholar 

  14. Neuman-Silberberg, F. & Schüpbach, T. Cell 75, 165–174 (1993).

    Article  CAS  Google Scholar 

  15. Price, J., Clifford, R. & Schüpbach, T. Cell 56, 1085–1092 (1989).

    Article  CAS  Google Scholar 

  16. Schejter, E. & Shilo, B.-Z. Cell 56, 1093–1104 (1989).

    Article  CAS  Google Scholar 

  17. Schüpbach, T. & Wieschaus, E. Genetics 129, 1119–1136 (1991).

    PubMed  PubMed Central  Google Scholar 

  18. Brand, A. & Perrimon, N. Genes Dev. 8, 629–639 (1994).

    Article  CAS  Google Scholar 

  19. Chasan, R. & Anderson, K. in The Development of Drosophila melanogaster (eds Bate, M. & Martínez-Arias, A.) 387–424 (Cold Spring Harbor Laboratory Press, New York, 1993).

    Google Scholar 

  20. Roth, S. & Schüpbach, T. Development 120, 2245–2257 (1994).

    CAS  Google Scholar 

  21. Montell, D., Rorth, P. & Spradling, A. Cell 71, 51–62 (1992).

    Article  CAS  Google Scholar 

  22. Fasano, L. & Kerridge, S. Development 104, 245–253 (1988).

    CAS  Google Scholar 

  23. Tolias, P. & Kafatos, F. EMBO J 9, 1457–1464 (1990).

    Article  CAS  Google Scholar 

  24. Cheung, H.-K., Serano, T. & Cohen, R. Development 114, 653–661 (1992).

    CAS  PubMed  Google Scholar 

  25. St Johnston, D., Beuchle, D. & Nüsslein-Volhard, C. Cell 66, 51–63 (1991).

    Article  CAS  Google Scholar 

  26. Giniger, E., Wells, W., Jan, L. & Jan, Y. Wilhelm Roux Arch. devl Biol. 202, 112–122 (1993).

    Article  CAS  Google Scholar 

  27. Kammermeyer, K. & Wadsworth, S. Development 100, 201–210 (1987).

    CAS  PubMed  Google Scholar 

  28. Shilo, B. & Raz, E. Trends Genet. 7, 388–392 (1991).

    Article  CAS  Google Scholar 

  29. Frohnhöfer, H. Thesis, Univ. Tübingen (1982).

  30. Brunner, D. et al. Cell 76, 875–888 (1994).

    Article  CAS  Google Scholar 

  31. Marshall, C. Cell 80, 179–185 (1995).

    Article  CAS  Google Scholar 

  32. Manseau, L. J. & Schüpbach, T. Genes Dev. 3, 1437–1452 (1989).

    Article  CAS  Google Scholar 

  33. Lantz, V., Chang, J., Horabin, J., Bopp, D. & Schedl, P. Genes Dev. 8, 598–613 (1994).

    Article  CAS  Google Scholar 

  34. Christerson, L. & McKearin, D. Genes Dev. 8, 614–628 (1994).

    Article  CAS  Google Scholar 

  35. Wieschaus, E., Marsh, J. & Gehring, W. Wilhelm Roux Arch. devl Biol. 184, 75–82 (1978).

    Article  Google Scholar 

  36. Ashburner, M. et al. Genetics 126, 679–694 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Schüpbach, T., Clifford, R., Manseau, L. & Price, J. in Cell-cell Interactions in Early Development (ed. Gerhart, J.) 163–174 (Wiley-Liss, New York, 1991).

    Google Scholar 

  38. Koch, E. & Spitzer, R. Cell Tissue Res. 228, 21–32 (1983).

    Article  CAS  Google Scholar 

  39. Hou, X., Chou, T.-B., Melnick, M. & Perrimon, N. Cell 81, 63–71 (1995).

    Article  CAS  Google Scholar 

  40. Grossniklaus, U., Bellen, H., Wilson, C. & Gehring, W. Development 107, 189–200 (1989).

    CAS  PubMed  Google Scholar 

  41. Klymkowsky, M. W. & Karnovsky, A. Devl Biol. 165, 372–384 (1994).

    Article  CAS  Google Scholar 

  42. Fujisue, M., Kobayakawa, Y. & Yamana, K. Development 118, 163–170 (1993).

    CAS  PubMed  Google Scholar 

  43. Yuge, M., Kobayakawa, Y., Fujisue, M. & Yamana, K. Development 110, 1051–1056 (1990).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

González-Reyes, A., Elliott, H. & St Johnston, D. Polarization of both major body axes in Drosophila by gurken-torpedo signalling. Nature 375, 654–658 (1995). https://doi.org/10.1038/375654a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/375654a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing