Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Climate-related variations in denitrification in the Arabian Sea from sediment 15N/14N ratios

Abstract

DENITRIFICATION—the process by which nitrate is reduced to gaseous nitrogen species (usually N2 or N2O)—is the dominant mechanism for removal of fixed nitrogen from the biosphere. In the oceans, denitrification is mediated by bacteria in suboxic environments and, by controlling the supply of fixed nitrogen, is an important limiting factor for marine productivity1–3. Denitrification produces substantial 15N enrichment in subsurface nitrate4–6, which is reflected in the isotopic composition of sinking particulate nitrogen7; sediment 15N/14N ratios in regions with suboxic water columns may therefore provide a record of past changes in denitrification intensity. Here we report nitrogen isotope data for sediment cores from three sites in the Arabian Sea. At all three sites we find large, near-synchronous downcore variations in 15N/14N, which are best explained by regional changes in the isotopic composition of subsurface nitrate, and hence denitrification. Moreover, these variations are synchronous with Milankovitch cycles, thereby establishing a link with climate. We argue that these large, climate-linked variations, in a region that contributes significantly to global marine denitrification, are likely to have perturbed marine biogeo-chemical cycles during the Late Quaternary period.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Codispoti. L. & Christensen, J. P. Mar. Chem. 16, 277–300 (1985).

    Article  CAS  Google Scholar 

  2. Devol. A. H. Nature 349, 319–321 (1991).

    Article  ADS  CAS  Google Scholar 

  3. Altabet, M. A. & Curry. W. B. Globl biogeochem. Cycles 3, 107–119 (1989).

    Article  ADS  Google Scholar 

  4. Miyake, Y. & Wada, E. Rec. oceanog. Works Japan 11, 1–6 (1971).

    CAS  Google Scholar 

  5. Cline, J. D. & Kaplan, I. R. Mar. Chem. 3, 271–299 (1975).

    Article  CAS  Google Scholar 

  6. Liu. K.-K. & Kaplan, I. R. Limnol. Oceanogr. 34, 820–830 (1989).

    Article  ADS  CAS  Google Scholar 

  7. Schafer, P. & Ittekkot, V. Naturwissenshaften 80, 511–513 (1993).

    Article  ADS  Google Scholar 

  8. Altabet, M. A. Deep-Sea Res. 35, 535–554 (1988).

    Article  ADS  CAS  Google Scholar 

  9. Altabet, M. A. & Francois, R. in Carbon Cycling in the Glacial Ocean: Constraints on the Ocean's Role in Global Change (eds Zahn, R., Kaminski, M, Labeyrie, L. & Pederson, T. F.) 281–306 (Springer, Berlin, 1994).

    Book  Google Scholar 

  10. Altabet, M. A. & Francois, R. Globl biogeochem. Cycles 8, 103–116 (1994).

    Article  ADS  CAS  Google Scholar 

  11. Libes, S. M. & Deuser, W. G. Deep-Sea Res. 35, 517–533 (1988).

    Article  ADS  CAS  Google Scholar 

  12. Nair, R. R. et al. Nature 338, 749–751 (1989).

    Article  ADS  Google Scholar 

  13. Hacke, B. et al. Deep-Sea Res. 40, 1323–1344 (1993).

    Article  ADS  Google Scholar 

  14. Wyrtki, K. Oceanographic Atlas of the International Indian Ocean Expedition (National Science Foundation, Washington DC, 1971).

    Google Scholar 

  15. Imbrie, J. et al. in Milankovitch and Climate Part 1 (eds Berger, A. L, Imbrie, J., Hays, J., Kukla, G. & Saltzman, B.) 269–305 (Reidel, Hingham, 1984).

    Google Scholar 

  16. Clemens, S., Prell, W., Murray, D., Shimmield, G. & Weedon, G. Nature 353, 720–725 (1991).

    Article  ADS  Google Scholar 

  17. Prell, W. L. in Milankovitch and Climate Part 1 (eds Berger, A. L, Imbrie, J., Hays, J., Kukla, G. & Saltzman, B.) 349–366 (Reidel, Hingham, 1984).

    Google Scholar 

  18. Prell, W. L. in Climate Processes and Climate Sensitivity (eds Hansen, J. & Takahashi, T.) 48–57 (Am. Geophys. Union, Washington DC, 1984).

    Book  Google Scholar 

  19. Prell, W. L., Murray, D. W., Clemens, S. C. & Anderson, D. M. in Synthesis of Results from Scientific Drilling in the Indian Ocean (eds Duncan, R. A., Rea, D. K., Kidd, R. B., Rad, U. V. & Weissel, J. K.) 447–469 (Am. Geophys. Union, Washington, DC, 1992).

    Google Scholar 

  20. Anderson, D. M. & Prell, W. L. Paleoceanography 8, 193–208 (1993).

    Article  ADS  Google Scholar 

  21. Olson, D. B., Hitchcock, G. L., Fine, R. A. & Warren, B. A. Deep-Sea Res. 40, 673–685 (1993).

    ADS  CAS  Google Scholar 

  22. Sarnthein, M. Mar. Geol. 12, 245–266 (1972).

    Article  ADS  Google Scholar 

  23. Christensen, J. P. W., Smethie, J. & Devol, A. H. Deep-Sea Res. 34, 1027–1047 (1987).

    Article  ADS  CAS  Google Scholar 

  24. Naqvi, S. W. A. J. mar. Res. 45, 1049–1072 (1987).

    Article  CAS  Google Scholar 

  25. Broecker, W. S. Prog. Oceanogr. 11, 151–197 (1982).

    Article  ADS  Google Scholar 

  26. Berger, W. H. & Keir, R. S. in Climate Processes and Climate Sensitivity (eds Hansen, J. E. & Takahashi, T.) 337–351 (Am Geophys. Union, Washington DC, 1984).

    Book  Google Scholar 

  27. Christensen, J. P., Murray, J. W., Devol, A. H. & Codispoti, L. A. Globl biogeochem. Cycles 1, 97–116 (1987).

    Article  ADS  CAS  Google Scholar 

  28. Codispoti, L. A. in Productivity of the Ocean: Present and Past (eds Berger, W. H., Smetacek, V. S. & Wefer, G.) 377–394 (Wiley, Chichester, 1989).

    Google Scholar 

  29. Ganeshram, R., Pedersen, T. F., Calvert, S. E. & Murray, J. W. Mineralog. Mag. 58A, 313–314 (1994).

    Article  ADS  Google Scholar 

  30. Goreau, T. J. et al. Appl. envir. Microbiol. 40, 526–532 (1980).

    CAS  Google Scholar 

  31. Lipschultz, F. et al. Nature 294, 641–643 (1981).

    Article  ADS  CAS  Google Scholar 

  32. Naqvi, S. W. A. & Noronha, R. J. Deep-Sea Res. 38, 871–890 (1991).

    Article  ADS  CAS  Google Scholar 

  33. Codispoti, L. A. et al. in Oceanography of the Indian Ocean (ed. Desai, B. N.) 271–284 (Oxford & IBH, New Delhi, 1992).

    Google Scholar 

  34. Leunberger, M. & Siegenthaler, U. Nature 360, 449–451 (1992).

    Article  ADS  Google Scholar 

  35. Kim, K. & Craig, H. Science 262, 1855–1857 (1993).

    Article  ADS  CAS  Google Scholar 

  36. Hastenrath, S. & Lamb, P. J. Climate Atlas of the Indian Ocean (Univ. Wisconsin, Madison, 1979).

    Google Scholar 

  37. Niitsuma, N., Oba, T. & Okada, M. Proc. ODP Sci. Res. 321–335 (1991).

  38. Clemens, S. & Prell, W. L. Paleoceanography 5, 109–145 (1990).

    Article  ADS  Google Scholar 

  39. Murray, D. W. & Prell, W. L. in Upwelling Systems: Evolution since the Early Miocence (eds Summerhayes, C. P., Prell, W. L. & Emeis, K. C.) 301–321 (Geological Soc., London, 1992).

    Google Scholar 

  40. Mantoura, R. F. C. et al. Deep-Sea Res. II 40, 651–671 (1993).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Altabet, M., Francois, R., Murray, D. et al. Climate-related variations in denitrification in the Arabian Sea from sediment 15N/14N ratios. Nature 373, 506–509 (1995). https://doi.org/10.1038/373506a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/373506a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing