Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Diffusion in Mg2SiO4 polymorphs and chemical heterogeneity in the mantle transition zone

Abstract

DIFFUSION in silicates plays a key role in a number of processes in the Earth's mantle, including viscous flow1–4, electrical conductance5–8 and the homogenization of chemical heterogeneities. Although cation diffusion rates have been measured in olivine at high pressures9,10, no data exist on the chemical transport properties of the silicate phases thought to predominate in the transition zone of the mantle (from 400 to 700 km depth). Here we present measurements of cation diffusion in the α-olivine phase and high-pressure β- and γ-spinel phases of Mg2SiO4 at pressures up to 14 GPa. We find that diffusion rates in both high-pressure phases are about three orders of magnitude faster than that of olivine. When coupled with convective thinning, these faster diffusion rates suggest that the transition zone is more efficient at mixing chemical heterogeneities than the olivine-dominated upper mantle. Furthermore, we calculate that the minimum size of chemical heterogeneities in the transition zone should be of the order of metres.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Karato, S. & Wu, P. Science 269, 771–778 (1993).

    Article  ADS  Google Scholar 

  2. Karato, S., Rubie, D. & Yan, H. J. geophys. Res. 98, 9761–9768 (1993).

    Article  ADS  Google Scholar 

  3. Jaoul, O. J. geophys. Res. 95, 17631–17642 (1990).

    Article  ADS  Google Scholar 

  4. Karato, S. & Ogawa, M. Phys. Earth planet. Inter. 28, 312–319 (1982).

    Article  ADS  CAS  Google Scholar 

  5. Akimoto, S. & Fujisawa, H. J. geophys. Res. 70, 443–449 (1965).

    Article  ADS  CAS  Google Scholar 

  6. Miyamoto, M. & Takeda, H. Nature 303, 602–603 (1983).

    Article  ADS  CAS  Google Scholar 

  7. Schock, R., Duba, A. & Shankland, T. J. J. geophys. Res. 94, 5829–5839 (1989).

    Article  ADS  CAS  Google Scholar 

  8. Omura, K. Phys. Earth planet. Inter. 65, 292–307 (1991).

    Article  ADS  Google Scholar 

  9. Misener, D. in Geochemical Transport and Kinetics (eds Hofmann, A. W., Giletti, B., Yoder, H. & Yund, R.) 117–129 (Carnegie Instn, Washington DC, 1974).

    Google Scholar 

  10. Bertran-Alvarez, Y., Jaoul, O. & Liebermann, R. C. Phys. Earth planet. Inter. 70, 102–118 (1992).

    Article  ADS  Google Scholar 

  11. Morioka, M. Geochim. cosmochim. Acta 45, 1573–1580 (1981).

    Article  ADS  CAS  Google Scholar 

  12. Buening, D. & Buseck, P. J. geophys. Res. 78, 6852–6862 (1973).

    Article  ADS  CAS  Google Scholar 

  13. Clark, A. & Long, J. in Thomas Graham Memorial Symposium on Diffusion Processes (eds Sherwood, J. N. et al.) 511–521 (Gordon & Breach, London, 1971).

    Google Scholar 

  14. Katsura, T. & Ito, E. J. geophys. Res. 94, 15663–15670 (1989).

    Article  ADS  Google Scholar 

  15. Crank, J. The Mathematics of Diffusion 2nd edn (Oxford Univ. Press, London, 1975).

    MATH  Google Scholar 

  16. Wagner, C. Acta Metall. 17, 99–107 (1969).

    Article  CAS  Google Scholar 

  17. Joesten, R. in Diffusion, Atomic Ordering, And Mass Transport: Selected Problems in Geo-chemistry (ed. Ganguly, J.) 345–395 (Springer, New York, 1991).

    Book  Google Scholar 

  18. Kamb, B. Am. Miner. 53, 1439–1455 (1968).

    CAS  Google Scholar 

  19. Horiuchi, H., Akaogi, M. & Sawamoto, H. in High-Pressure Research in Geophysics (eds Akimoto, S. & Maghnani, M. H.) 391–403 (Center for Academic Publications, Tokyo, 1982).

    Book  Google Scholar 

  20. Kellogg, L. & Turcotte, D. L. J. geophys. Res. 95, 421–432 (1990).

    Article  ADS  Google Scholar 

  21. Hofmann, A. W. & Hart, S. R. Earth planet. Sci. Lett. 38, 44–62 (1978).

    Article  ADS  CAS  Google Scholar 

  22. Hoffmann, N. R. A. & McKenzie, D. Geophys. J. R. astr. Soc. 82, 163–206 (1985).

    Article  ADS  Google Scholar 

  23. Ricard, Y., Vigny, C. & Froidevaux, C. J. geophys. Res. 94, 13739–13754 (1989).

    Article  ADS  Google Scholar 

  24. Spada, G., Sabadini, R., Yuen, D. A. & Ricard, Y. Geophys. J. Int. 109, 683–700 (1992).

    Article  ADS  Google Scholar 

  25. Karato, S. Phys. Earth planet. Inter. 55, 234–240 (1989).

    Article  ADS  CAS  Google Scholar 

  26. Fukao, Y., Obayashi, M., Inoue, H. & Nenbai, M. J. geophys. Res. 97, 4809–4822 (1992).

    Article  ADS  Google Scholar 

  27. van der Hilst, R., Engdahl, R., Spakman, W. & Nolet, G. Nature 353, 37–43 (1991).

    Article  ADS  Google Scholar 

  28. Rubie, D., Karato, S., Yan, H. & O'Neill, H. St. Phys. Chem. Miner. 20, 315–322 (1993).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farber, D., Williams, Q. & Ryerson, F. Diffusion in Mg2SiO4 polymorphs and chemical heterogeneity in the mantle transition zone. Nature 371, 693–695 (1994). https://doi.org/10.1038/371693a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/371693a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing