Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Carbon and the formation of reduced chondrules

Abstract

CHONDRULES are millimetre-sized spheroidal bodies composed mainly of olivine and orthopyroxene, which comprise the dominant fraction of most chondritic meteorites. They are the products of partial melting of aggregates of fine-grained silicates with minor contributions from metals, sulphides and oxides. Although the formation conditions of chondrules are not well understood, these are thought to involve a transient melting event in the solar nebula1–3. The ubiquity of reduced carbon in interstellar clouds and primitive meteorites implies that it was also present in the early solar nebula, and may thus have been a potential constituent of chondrule pre-cursor material. We describe here experiments in which carbon and magnesian silicate precursor material of primitive chondrule composition are 'flash-heated' together and then crystallized. The resulting material shows many mineralogical features character-istic of natural chondrules, which are not produced in the absence of carbon4–12. Our results suggest not only that carbon was present in the solar nebula, but also that it played a key role in chondrule formation by creating within the melt a reducing environment that was decoupled from the nebula gas.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Grossman, J. N., Rubin, A. E., Nagahara, H. & King, E. A. in Meteorites and the Early Solar System (eds Kerridge, J. K. & Mathews, M. S.) 619–659 (Univ. Arizona, Tucson, 1988).

    Google Scholar 

  2. Grossman, J. N. in Meteorites and the Early Solar System (eds Kerridge, J. K. & Mathews, M. S.) 680–696 (Univ. Arizona, Tucson, 1988).

    Google Scholar 

  3. Hewins, R. H. Geochim. cosmochim. Acta 55, 935–942 (1991).

    Article  ADS  CAS  Google Scholar 

  4. Lofgren, G. E. Geochim. cosmochim. Acta 53, 461–470 (1989).

    Article  ADS  CAS  Google Scholar 

  5. Lofgren, G. E. & Russell, W. J. Geochim. cosmochim. Acta 50, 1715–1726 (1986).

    Article  ADS  CAS  Google Scholar 

  6. Lofgren, G. E. & Lanier, A. Geochim. cosmochim. Acta 54, 3537–3558 (1990).

    Article  ADS  CAS  Google Scholar 

  7. Radomsky, P. M. & Hewins, R. H. Geochim. cosmochim. Acta 50, 3475–3490 (1991).

    Google Scholar 

  8. Connolly, H. C. Jr & Hewins, R. H. Geochim. cosmochim. Acta 55, 2943–2950 (1991).

    Article  ADS  Google Scholar 

  9. Hewins, R. H. in Meteorites and the Early Solar System (eds Kerridge, J. K. & Mathews, M. S.) 660–679 (Univ. Arizona, Tucson, 1988).

    Google Scholar 

  10. Connolly, H. C. Jr & Hewins, R. H. Meteoritics 25, 354–355 (1991).

    Google Scholar 

  11. Connolly, H. C. Jr, Hewins, R. H. & Lofgren, G. E. Lunar planet. Sci. Abstr. 24, 329–330 (1993).

    ADS  Google Scholar 

  12. Connolly, H. C. Jr, Hewins, R. H. & Lofgren, G. E. Meteoritics 28, 338–339 (1993).

    Google Scholar 

  13. Wood, J. A. in Protostars and Planets II (eds Black, D. C. & Mathews, M. S.) 687–702 (Univ. Arizona Press, Tucson, 1985).

    Google Scholar 

  14. Brearley, A. J. Geochim. cosmochim. Acta 54, 831–850 (1990).

    Article  ADS  CAS  Google Scholar 

  15. Scott, E. R. D. et al. Proc. Lunar planet. Sci. Conf. Vol 12 B, 513–523 (Pergamon, 1988).

    Google Scholar 

  16. Taylor, G. J. et al. Lunar Planet. Sci. Abstr. 12, 955–956 (1981).

    ADS  Google Scholar 

  17. Scott, E. R. D. & Jones, R. H. Geochim. cosmochin. Acta 54, 2485–2502 (1991).

    Article  ADS  Google Scholar 

  18. Kerridge, J. F. Geochim. cosmochim. Acta 49, 1707–1714 (1985).

    Article  ADS  CAS  Google Scholar 

  19. Nagahara, H. Nature 292, 135–136 (1981).

    Article  ADS  CAS  Google Scholar 

  20. Rambaldi, E. R. Nature 293, 558–561 (1981).

    Article  ADS  CAS  Google Scholar 

  21. Tsuchiyama, A. & Miyamoto, M. Lunar Planet. Sci. Abstr. 15, 868–869 (1984).

    ADS  Google Scholar 

  22. Grossman, L. & Olsen, E. Geochim. cosmochim. Acta 38, 173–187 (1974).

    Article  ADS  CAS  Google Scholar 

  23. Scott, E. R. D. & Taylor, G. J. J. geophys. Res. Suppl. 88, B275–B286 (1983).

    Article  ADS  CAS  Google Scholar 

  24. Zanda, B., Bourot-Denise, M., Perron, C. & Hewins, R. H. Science (in the press).

  25. Wood, J. Icarus 6, 1–49 (1967).

    Article  ADS  CAS  Google Scholar 

  26. Mostefaoui, S. & Perron, C. Lunar Planet. Sci. Abstr. 25, 945–946 (1994).

    ADS  Google Scholar 

  27. Johnson, M. Geochim. cosmochim. Acta 50, 1497–1502 (1986).

    Article  ADS  CAS  Google Scholar 

  28. Hewins, R. H. & Zanda, B. Meteoritics 27, 233 (1992).

    Google Scholar 

  29. Larimer, J. W. Geochim. cosmochim. Acta 50, 1497–1502 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Connolly, H., Hewins, R., Ash, R. et al. Carbon and the formation of reduced chondrules. Nature 371, 136–139 (1994). https://doi.org/10.1038/371136a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/371136a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing