Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

M and L cones in macaque fovea connect to midget ganglion cells by different numbers of excitatory synapses

Abstract

VISUAL acuity depends on the fine-grained neural image set by the foveal cone mosaic1–3. To preserve this spatial detail, cones transmit through non-divergent pathways: cone → midget bipolar cell → midget ganglion cell. Adequate gain must be established along each pathway; crosstalk and sources of variation between pathways must be minimized. These requirements raise fundamental questions regarding the synaptic connections: (1) how many synapses from bipolar to ganglion cell transmit a cone signal and with what degree of crosstalk between adjacent pathways; (2) how accurately these connections are reproduced across the mosaic; and (3) whether the midget circuits for middle (M) and long (L) wavelength sensitive cones are the same. We report here that the midget ganglion cell collects without crosstalk either 28 ±4 or 47 ± 3 midget bipolar synapses. Two cone types are defined by this difference; being about equal in number and distributing randomly in small clusters of like type, they are probably M and L.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Williams, D. R. Trends Neurosci. 9, 193–198 (1986).

    Article  Google Scholar 

  2. DeValois, R. L., Morgan, H. & Snodderly, D. M. Vis. Res. 14, 75–81 (1974).

    Article  CAS  Google Scholar 

  3. Merigan, W. H. & Katz, L. M. Vis. Res. 30, 985–991 (1990).

    Article  CAS  Google Scholar 

  4. Kolb, H. Phil. Trans. R. Soc. Lond. B 258, 261–283 (1970).

    Article  CAS  Google Scholar 

  5. Nelson, R., Famiglietti, E. V. & Kolb, H. J. Neurophysiol. 41, 472–483 (1978).

    Article  CAS  Google Scholar 

  6. Dacey, D. & Lee, B. B. Nature 367, 731–735 (1994).

    Article  ADS  CAS  Google Scholar 

  7. Polyak, S. L. The Retina (Univ. Chicago Press, Chicago, 1941).

    Google Scholar 

  8. Boycott, B. B. & Dowling, J. E. Phil. Trans. R. Soc. Lond. B 255, 109–184 (1969).

    Google Scholar 

  9. Kolb, H. & Dekorver, L. J. comp. Neurol. 303, 617–636 (1991).

    Article  CAS  Google Scholar 

  10. Dowling, J. E. & Boycott, B. B. Proc. R. Soc. Lond. B 166, 80–111 (1966).

    ADS  CAS  PubMed  Google Scholar 

  11. Mendenhall, W., Wackerly, D. D. & Scheaffer, R. L. Mathematical Statistics with Applications 4th edn 708–715 (Duxbury, Belmont, CA, 1990).

    MATH  Google Scholar 

  12. Giacomelli, F., Wiener, J., Kruskal, J. B., Pomeranz, J. V. & Loud, A. V. J. Histochem. Cytochem. 19, 426–433 (1971).

    Article  CAS  Google Scholar 

  13. Dacey, D. M. & Petersen, M. R. Proc. natn. Acad. Sci. U. S. A. 89, 9666–9670 (1992).

    Article  ADS  CAS  Google Scholar 

  14. McGuire, B. A., Stevens, J. K. & Sterling, P. J. Neurosci. 4, 2920–2938 (1984).

    Article  CAS  Google Scholar 

  15. Cohen, E. & Sterling, P. Eur. J. Neurosci. 4, 506–520 (1992).

    Article  Google Scholar 

  16. Anhelt, P., Keri, C. & Kolb, H. J. comp. Neurol. 293, 39–53 (1990).

    Article  Google Scholar 

  17. Wässle, H., Boycott, B. B. & Röhrenbeck, J. Eur. J. Neurosci. 1, 421–435 (1989).

    Article  Google Scholar 

  18. Mollon, J. D. & Bowmaker, J. K. Nature 360, 677–679 (1992).

    Article  ADS  CAS  Google Scholar 

  19. Klug, K., Tsukamoto, Y., Sterling, P. & Schein, S. J. Soc. for Neurosci. Abstr. 352.5 (Anaheim, CA, 1992).

    Google Scholar 

  20. Klug, K., Tsukamoto, Y., Sterling, P. & Schein, S. J. ARVO Abstr. 1398 (Association for Research in Vision and Ophthalmology, Sarasota, FL, 1993).

    Google Scholar 

  21. Mariani, A. P. Nature 308, 184–186 (1984).

    Article  ADS  CAS  Google Scholar 

  22. Kouyama, N. & Marshak, D. W. J. Neurosci. 12, 1233–1252 (1992).

    Article  CAS  Google Scholar 

  23. Tsukamoto, Y., Masarachia, P., Schein, S. J. & Sterling, P. Vis. Res. 32, 1809–1815 (1992).

    Article  CAS  Google Scholar 

  24. Smith, R. G. J. Neurosci. Meth. 21, 55–69 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calkins, D., Schein, S., Tsukamoto, Y. et al. M and L cones in macaque fovea connect to midget ganglion cells by different numbers of excitatory synapses. Nature 371, 70–72 (1994). https://doi.org/10.1038/371070a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/371070a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing