Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structural similarity between the p17 matrix protein of HIV-1 and interferon-γ

Abstract

THE human immunodeficiency virus (HIV) matrix protein, p17, forms the outer shell of the core of the virus, lining the inner surface of the viral membrane1–4. The protein has several key functions. It orchestrates viral assembly via targeting signals that direct the gag precursor polyprotein, p55, to the host cell membrane1,5–7 and it interacts with the transmembrane protein, gp41, to retain the env-encoded proteins in the virus8. In addition, pi7 contains a nuclear localization signal that directs the preintegration complex to the nucleus of infected cells9. This permits the virus to infect productively non-dividing cells, a distinguishing feature of HIV and other lentiviruses. We have determined the solution structure of p17 by nuclear magnetic resonance (NMR) with a root-mean square deviation for the backbone of the well-defined regions of 0.9 Å. It consists of four helices connected by short loops and an irregular, mixed β-sheet which provides a positively charged surface for interaction with the inner layer of the membrane. The helical topology is unusual; the Brookhaven protein database contains only one similar structure, that of the immune modulator interferon-γ.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Spearman, P., Wang, J., Heyden, N. V. & Ratner, L. J. Virol. 68, 3233–3242 (1994).

    Google Scholar 

  2. Gelderblom, H. R., Özel, M. & Pauli, G. Archs Virol. 106, 1–13 (1989).

    Article  CAS  Google Scholar 

  3. Nermut, M. V. et al. Virology 198, 288–296 (1994).

    Article  CAS  Google Scholar 

  4. Arnold, E. & Arnold, G. F. Adv. Virus Res. 39, 1–58 (1991).

    Article  CAS  Google Scholar 

  5. Bryant, M. & Ratner, L. Proc. natn. Acad. Sci. U.S.A. 87, 523–527 (1989).

    Article  ADS  Google Scholar 

  6. Yuan, X., Yu, X., Lee, T. & Essex, M. J. Virol. 67, 6387–6394 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. González, S. A., Affranchino, J. L., Gelderblom, H. R. & Burny, A. Virology 194, 548–556 (1993).

    Article  Google Scholar 

  8. Yu, X., Yuan, X., Matsuda, Z., Lee, T. & Essex, M. J. Virol. 66, 4966–4971 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Bukrinsky, M. I. et al. Nature 365, 666–669 (1993).

    Article  CAS  ADS  Google Scholar 

  10. Marion, D. et al. Biochemistry 28, 6150–6156 (1989).

    Article  CAS  Google Scholar 

  11. Driscoll, P. C., Clore, G. M., Marion, D., Wingfield, P. T. & Gronenborn, A. M. Biochemistry 29, 3542–3556 (1990).

    Article  CAS  Google Scholar 

  12. Bax, A., Clore, G. M. & Gronenborn, A. M. J. magn. Reson. 88, 425–431 (1990).

    CAS  ADS  Google Scholar 

  13. Nilges, M., Gronenborn, A. M., Brünger, A. T. & Clore, G. M. Protein Engng 2, 27–38 (1988).

    Article  CAS  Google Scholar 

  14. Brünger, A. T. XPLOR Manual Ver 3.1 (Yale Univ. Press, New Haven, 1993).

    Google Scholar 

  15. Main, A. L., Harvey, T. S., Baron, M., Boyd, J. & Campbell, I. D. Cell 71, 671–678 (1992).

    Article  CAS  Google Scholar 

  16. Samudzi, C. T., Buston, L. E. & Rubin, J. R. J. biol. Chem. 266, 21791–21797 (1991).

    CAS  PubMed  Google Scholar 

  17. Ealick, S. E. et al. Science 252, 698–702 (1991).

    Article  CAS  ADS  Google Scholar 

  18. Farrer, M. A. & Schreiber, R. D. A. Rev. Immun. 11, 571–611 (1993).

    Article  Google Scholar 

  19. Lundell, D. et al. Protein Engng 4, 335–341 (1991).

    Article  CAS  Google Scholar 

  20. Grzesiek, S. et al. Biochemistry 31, 8180–8190 (1992).

    Article  CAS  Google Scholar 

  21. Stuart, D. Curr. Opin. struct. Biol. 3, 167–174 (1993).

    Article  CAS  Google Scholar 

  22. Zhou, W., Parent, L. J., Wills, J. W. & Resh, M. D. J. Virol. 68, 2556–2569 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Johnson, R. P. et al. J. Immun. 147, 1512–1521 (1991).

    CAS  PubMed  Google Scholar 

  24. Kraulis, P. J. J. appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  25. Matthews, S. J., Jandu, S. K. & Leatherbarrow, R. J. Biochemistry 32, 657–662 (1993).

    Article  CAS  Google Scholar 

  26. Wüthrich, K., Billeter, M. & Braun, W. J. molec. Biol. 169, 949–961 (1983).

    Article  Google Scholar 

  27. Kay, L. A. & Bax, A. J. magn. Reson. 86, 110–126 (1990).

    CAS  ADS  Google Scholar 

  28. Russell, R. B. & Barton, G. J. Proteins: Struct. Funct. Genet. 14, 309–323 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matthews, S., Barlow, P., Boyd, J. et al. Structural similarity between the p17 matrix protein of HIV-1 and interferon-γ. Nature 370, 666–668 (1994). https://doi.org/10.1038/370666a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/370666a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing