Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Interactions of a small RNA with antibiotic and RNA ligands of the 30S subunit

Abstract

IT is now generally accepted that 16S and 23S ribosomal RNA play important roles in the decoding and peptidyl transferase activities of ribosomes1,2. Despite their complex structures and numerous associated proteins it is possible that small domains of these rRNAs can fold and function autonomously, particularly those that appear devoid of protein interactions3. One candidate for such a domain is the decoding region, located near the 3′ end of 16S rRNA (Fig. la, b). Consistent with this hypothesis, aminoglycoside antibiotics that interact with the decoding region in 30S subunits interact with other RNAs in the absence of proteins4–7. In addition, certain activities of self-splicing introns, at least superficially, resemble translational decoding8,9. We report here that an oligo-ribonucleotide analogue of the decoding region interacts with both antibiotic and RNA ligands of the 30S subunit in a manner that correlates with normal subunit function. The activities of the decoding region analogue suggest that the intimidating structural complexity of the ribosome can be, to some degree, circumvented.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Noller, H. F. et al. in The Ribosome: Structure, Function, and Evolution (ed. Hill, W. E. et al.) 73–92 (Am. Soc. Microbiol., Washington DC. 1990).

    Google Scholar 

  2. Noller, H. F. in The RNA World (eds Gesteland, R. F. & Atkins, J. F.) 137–184 (Cold Spring Harbor Laboratory Press, New York, 1993).

    Google Scholar 

  3. Stern, S., Powers, T., Changchien, L.-M. & Noller, H. F. Science 244, 783–790 (1989).

    Article  CAS  ADS  Google Scholar 

  4. von Ahsen, U., Davies, J. & Schroeder, R. Nature 353, 368–370 (1991).

    Article  CAS  ADS  Google Scholar 

  5. von Ahsen, U., Davies, J. & Schroeder, R. J. molec. Biol. 226, 935–941 (1992).

    Article  CAS  Google Scholar 

  6. von Ahsen, U. & Noller, H. F. Science 260, 1500–1503 (1993).

    Article  CAS  ADS  Google Scholar 

  7. Zapp, M. L., Stern, S. & Green, M. R. Cell 74, 969–978 (1993).

    Article  CAS  Google Scholar 

  8. Noller, H. F. Nature 353, 302–303 (1991).

    Article  CAS  ADS  Google Scholar 

  9. Schroeder, R., Streicher, B. & Wank, H. Science 260, 1443–1444 (1993).

    Article  CAS  ADS  Google Scholar 

  10. Moazed, D. & Noller, H. F. Nature 327, 389–394 (1987).

    Article  CAS  ADS  Google Scholar 

  11. Woodcock, J., Moazed, D., Shannon, M., Davies, J. & Noller, H. F. EMBO J. 10, 3099–3103 (1991).

    Article  CAS  Google Scholar 

  12. Moazed, D. & Noller, H. F. Biochimie 69, 879–884 (1987).

    Article  CAS  Google Scholar 

  13. Stern, S., Moazed, D. & Noller, H. F. Meth. Enzym. 164, 481–489 (1988).

    Article  CAS  Google Scholar 

  14. Rose, S. J., Lowary, P. T. & Uhlenbeck, O. C. J. molec. Biol. 167, 103–117 (1983).

    Article  CAS  Google Scholar 

  15. Moazed, D. & Noller, H. F. Cell 47, 985–994 (1986).

    Article  CAS  Google Scholar 

  16. Moazed, D. & Noller, H. F. J. molec. Biol. 211, 135–145 (1990).

    Article  CAS  Google Scholar 

  17. Moazed, D., Stern, S. & Noller, H. F. J. molec. Biol. 187, 399–416 (1986).

    Article  CAS  Google Scholar 

  18. Tuerk, C. et al. Proc. natn. Acad. Sci. U.S.A. 85, 1364–1368 (1988).

    Article  CAS  ADS  Google Scholar 

  19. Woese, C. R., Winker, S. & Gutell, R. R. Proc. natn. Acad. Sci. U.S.A. 87, 8467–8471 (1990).

    Article  CAS  ADS  Google Scholar 

  20. Davis, P. W., Thurmes, W. & Tinoco, I. Jr. Nucleic Acids Res. 21, 537–545 (1993).

    Article  CAS  Google Scholar 

  21. Prince, J. B., Taylor, B. H., Thurlow, D. L., Ofengand, J. & Zimmerman, R. Proc. natn. Acad. Sci. U.S.A. 79, 5450–5454 (1982).

    Article  CAS  ADS  Google Scholar 

  22. Noller, H. F. A. Rev. Biochem. 53, 119–162 (1984).

    Article  CAS  Google Scholar 

  23. Gutell, R. R., Weiser, B., Woese, C. R. & Noller, H. F. Prog. Nucleic Acids Res. molec. Biol. 32, 153–216 (1985).

    Google Scholar 

  24. Gutell, R. R. in The Translational Apparatus (eds Nierhaus, K. H. et al.) 477–488 (Plenum, New York, 1993).

    Book  Google Scholar 

  25. Milligan, J. F. & Uhlenbeck, O. C. Meth. Enzym. 180, 51–62 (1989).

    Article  CAS  Google Scholar 

  26. Peattie, D. A. & Gilbert, W. Proc. natn. Acad. Sci. U.S.A 77, 4679–4682 (1980).

    Article  CAS  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Purohit, P., Stern, S. Interactions of a small RNA with antibiotic and RNA ligands of the 30S subunit. Nature 370, 659–662 (1994). https://doi.org/10.1038/370659a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/370659a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing