Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Preparation and structure of crystals of the metallofullerene Sc2@C84

Abstract

IT was first proposed in 19851 that fullerenes can confine atoms in their interior because of their closed-cage structure. Attempts to verify this conjecture following the mass production of fullerenes2,3 have yielded metallofullerenes in bulk, and there is now good evidence that these compounds are endohedral4—that is, that the metal atoms are inside. But direct confirmation in the form of structural data has been lacking, in part because of the difficulty of separating different metallofullerenes and obtaining pure crystals. Here we report the preparation of pure crystalline Sc2@C84 and analyses of its structure by electron diffraction and high-resolution transmission electron microscopy. At room temperature the Sc2@C84 molecules pack in a hexagonal-close-packed structure with a ratio of lattice constants c/a = 1.63, the value expected for ideal-sphere packing. The molecular spacing of 11.2 Å is the same as that found earlier in crystalline C84 (refs 5, 6). The match between our microscopic images and simulations is markedly better for endohedral models than for those in which the metal atoms reside in the lattice outside the C84 cages. We believe that this combination of observations points inevitably to the conclusion that the metal atoms are inside the fullerenes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kroto, H. W., Heath, J. R., O'Brien, S. C., Curl, R. F. & Smalley, R. E. Nature 318, 162–163 (1985).

    ADS  CAS  Google Scholar 

  2. Krätschmer, W., Fostiropoulos, K. & Huffman, D. R. Chem. Phys. Lett. 170, 167–170 (1990).

    Article  ADS  Google Scholar 

  3. Krätschmer, W., Lamb, L. D., Fostiropoulos, K. & Huffman, D. R. Nature 347, 354–358 (1990).

    Article  ADS  Google Scholar 

  4. Bethune, D. S., Johnson, R. D., Salem, J. R., de Vries, M. S. & Yannoni, C. S. Nature 366, 123–128 (1993).

    Article  ADS  CAS  Google Scholar 

  5. Saito, Y., Yoshikawa, T., Fujimoto, N. & Shinohara, H. Phys. Rev. B48, 9182–9185 (1993).

    Article  ADS  CAS  Google Scholar 

  6. Armbruster, J. F. et al. Phys. Rev. B (submitted).

  7. Shinohara, H. et al. J. phys. Chem. 97, 4259–4261 (1993).

    Article  CAS  Google Scholar 

  8. Kikuchi, K. et al. Chem. Phys. Lett. 216, 67–91 (1993).

    Article  ADS  CAS  Google Scholar 

  9. Dorn, H. C. et al. Analyt. Chem. (in the press).

  10. Stevenson, S. et al. Analyt. Chem. (in the press).

  11. Wang, X. et al. Jap. J. appl. Phys. 32, L866–L868 (1993).

    Article  CAS  Google Scholar 

  12. Van Tendeloo, G. & Amelinckx, S. Adv. Mater. 5, 620–629 (1993).

    Article  CAS  Google Scholar 

  13. Muto, S. et al. Phil. Mag. B67, 443–463 (1993).

    Article  CAS  Google Scholar 

  14. Kikuchi, K. et al. Chem. Lett. 16, 1607–1610 (1991).

    Article  Google Scholar 

  15. Diederich, F. & Whetten, R. L. Accts. Chem. Res. 25, 119–126 (1992).

    Article  CAS  Google Scholar 

  16. Kikuchi, K. Nature 357, 142–145 (1992).

    Article  ADS  CAS  Google Scholar 

  17. Manolopolous, D. E., Fowler, P. W., Taylor, R., Kroto, H. W. & Walton, D. J. chem. Soc., Faraday Trans. 88, 3117–3118 (1992).

    Article  Google Scholar 

  18. Zhang, X. W. & Ho, D. S. Phys. Rev. Lett. 69, 69–72 (1992).

    Article  ADS  Google Scholar 

  19. Raghavachari, K. Chem. Phys. Lett. 190, 397–400 (1992).

    Article  ADS  CAS  Google Scholar 

  20. Wang, B. L. & Ho, D. S. J. chem. Phys. 96, 7183–7185 (1992).

    Article  ADS  Google Scholar 

  21. Bakoies, D. et al. Chem. Phys. Lett. 200, 411–417 (1992).

    Article  ADS  Google Scholar 

  22. Schneider, U., Richard, S., Kappes, M. M. & Ahlrichs, R. Chem. Phys. Lett. 210, 165–169 (1993).

    Article  ADS  CAS  Google Scholar 

  23. Manolopolous, D. E. & Fowler, P. W. J. chem. Phys. 96, 7603–7614 (1992).

    Article  ADS  Google Scholar 

  24. Yannoni, C., Bernier, P., Bethune, D., Meijer, G. & Salem, J. J. Am. chem. Soc. 113, 3190–3192 (1991).

    Article  CAS  Google Scholar 

  25. Fleming, R. et al. in Proc. Mater. Res. Soc. Vol. 206 (eds Averback, R. S., Berhole, J. & Nelson, D. L.) 691–696 (Materials Research Soc., Pittsburgh, 1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beyers, R., Kiang, CH., Johnson, R. et al. Preparation and structure of crystals of the metallofullerene Sc2@C84. Nature 370, 196–199 (1994). https://doi.org/10.1038/370196a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/370196a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing