Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

NMDA receptors and activity-dependent tuning of the receptive fields of spinal cord neurons

Abstract

AFTER peripheral nerve section, sensory neurons regenerate but do not regain their original topographical position in the skin1. Here we report that in the early stages of sciatic nerve regeneration, the cutaneous receptive fields (RFs) of dorsal horn neurons are larger than normal, reflecting the disorganized topography of the regenerated afferents. When nerve regeneration is complete, small contiguous RFs emerge, indicating a central compensation for the disrupted peripheral somatotopy. If the NMDA receptor antagonist MK801 is given during regeneration, RFs do not show this reorganization, but remain large and diffuse. We suggest that the coincident activity of afferents, newly innervating adjacent or over-lapping cutaneous territory, acts through postsynaptic NMDA receptors2 to strengthen the central effectiveness of these inputs at the expense of other non-adjacent and non-coincidently activated inputs. In this way, dorsal horn neurons may attain and retain restricted RFs in the face of a spatially dispersed afferent input.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Fawcett, J. W. & Keynes, R. J. A. Rev. Neurosci. 13, 43–60 (1990).

    Article  CAS  Google Scholar 

  2. Constantine-Paton, M., Cline, H. T. & Debeski, E. A. Rev. Neurosci. 13, 129–154 (1990).

    Article  CAS  Google Scholar 

  3. Dykes, R. W. & Terzis, J. K. J. Neurophysiol. 42, 1461–1478 (1979).

    Article  CAS  Google Scholar 

  4. Horch, K. J. Neurophysiol. 42, 1437–1449 (1979).

    Article  CAS  Google Scholar 

  5. Devor, M. & Wall, P. D. Nature 276, 75–76 (1978).

    Article  ADS  CAS  Google Scholar 

  6. Devor, M. & Wall, P. D. J. Neurosci. 1, 679–684 (1981).

    Article  CAS  Google Scholar 

  7. Lisney, S. J. W. Brain Res. 259, 31–39 (1983).

    Article  CAS  Google Scholar 

  8. McMahon, S. B., Lewin, G. R. & Wall, P. D. Curr. Opin. Neurobiol. 3, 602–610 (1993).

    Article  CAS  Google Scholar 

  9. Tulle, T. R., Berthele, A., Zieglgansberger, W., Seeburg, P. H. & Wisden, W. J. Neurosci. 13, 5009–5028 (1993).

    Article  Google Scholar 

  10. Wong, E. H. et al. Proc. natn. Acad. Sci. U.S.A. 83, 7104–7108 (1986).

    Article  ADS  CAS  Google Scholar 

  11. Woolf, C. J. & Thompson, S. W. N. Pain 44, 293–299 (1991).

    Article  CAS  Google Scholar 

  12. Hao, J. X., Aldskogius, H., Seiger, A. & Weisenfeld-Hallin, Z. Expl Neurology 113, 182–191 (1991).

    Article  CAS  Google Scholar 

  13. Headley, P. M., Parsons, C. G. & West, D. C. J. Physiol. 385, 169–180 (1984).

    Article  Google Scholar 

  14. Dougherty, P. M., Palecek, J., Paleckova, V., Sorkin, L. S. & Willis, W. D. J. Neurosci. 12, 3025–3041 (1992).

    Article  CAS  Google Scholar 

  15. Davies, S. N. & Lodge, D. Brain Res. 424, 402–406 (1987).

    Article  CAS  Google Scholar 

  16. Dickenson, A. H. & Sullivan, A. F. Neuropharmacology 26, 1235–1238 (1987).

    Article  CAS  Google Scholar 

  17. Agrawal, S. G. & Evans, R. H. Br. J. Pharmac. 87, 345–355 (1986).

    Article  CAS  Google Scholar 

  18. Huettner, J. E. Neuron 5, 255–266 (1990).

    Article  CAS  Google Scholar 

  19. Li, Y., Erzurumlu, R. S., Chen, C., Jhaveri, S. & Tonegawa, S. Cell 76, 427–437 (1994).

    Article  CAS  Google Scholar 

  20. Thompson, S. W. N., King, A. E. & Woolf, C. J. Eur. J. Neurosci. 2, 638–649 (1990).

    Article  CAS  Google Scholar 

  21. Schaible, H.-G., Grubb, B. D., Neugebauer, V. & Oppmann, M. Eur. J. Neurosci. 3, 981–991 (1991).

    Article  Google Scholar 

  22. Lewin, G. R. & McMahon, S. B. Eur. J. Neurosci. 5, 1083–1092 (1993).

    Article  CAS  Google Scholar 

  23. Hebb, D. O. The Organisation of Behaviour (Wiley, New York, 1949).

    Google Scholar 

  24. Morris, R. G., Davis, S. & Butcher, S. P. Phil. Trans. R. Soc. Lon. B329, 187–204 (1990).

    Article  ADS  CAS  Google Scholar 

  25. Watkins, J. C. The NMDA Receptor Concept: Origins and Development (eds Watkins, J. C. & Collingridge, G. L.) 1–19 (Oxford University Press, Oxford, 1989).

    Google Scholar 

  26. Randic, M., Jiang, M. C. & Cerne, R. J. Neurosci. 13, 5228–5241 (1993).

    Article  CAS  Google Scholar 

  27. Kaas, J. H. A. Rev. Neurosci. 14, 137–167 (1991).

    Article  CAS  Google Scholar 

  28. Kano, M., Lino, K. & Kano, M. NeuroReport 2, 77–80 (1991).

    Article  CAS  Google Scholar 

  29. Shlagger, B. L., Fox, K. & O'Leary, D. D. M. Nature 364, 623–625 (1993).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lewin, G., Mckintosh, E. & McMahon, S. NMDA receptors and activity-dependent tuning of the receptive fields of spinal cord neurons. Nature 369, 482–485 (1994). https://doi.org/10.1038/369482a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/369482a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing