Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Chemical self-replication of palindromic duplex DNA

Abstract

MOLECULAR replication, a fundamental process of life, has in recent years been the subject of laboratory investigations using simple chemical systems1–10. Whereas the work of Rebek's group4,5 has focused on molecular architectures not known in living systems, self-replicating and template-based self-assembling systems based on nucleotides6–8 are regarded as potential models for exploring the evolution of replicating systems on the early Earth. Previous replicating oligonucleotides have been of the single-stranded, self-complementary type: small oligonucleotide fragments are assembled on a pre-existing template and linked to form an exact copy of the template. This process cannot easily be reiterated, however, because of the strong binding of the newly formed strand to the original template. Furthermore, DNA replication in living systems operates by complementarity rather than self-complementarity—each newly assembled strand is complementary to, rather than identical to, its template—and the replication process starts and finishes with double helices. Here we report the self-replication of palindromic (symmetrical) duplex DNA-like oligonucleotides, 24 monomers long, in the absence of enzymes by means of a cycle that transfers information from template to copy and is potentially capable of extension to include non-symmetrical sequences, selection and mutation. Replication proceeds by a chemical process involving the formation of an intermediate triplex structure, and is sequence-selective in the sense that mismatches impair its efficiency. These results indicate that DNA-like double-helical molecules can replicate without assistance from proteins, a finding that may be relevant both to the appearance of replicating systems on the early Earth and to the development of new approaches to DNA amplification.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Orgel, L. E. Nature 358, 203–209 (1992).

    Article  ADS  CAS  Google Scholar 

  2. Joyce, G. F. Nature 338, 217–224 (1989).

    Article  ADS  CAS  Google Scholar 

  3. Hoffmann, S. Angew. Chem. int. Edn engl. 31, 1013–1016 (1992).

    Article  Google Scholar 

  4. Tjivikua, T., Ballesten, P. & Rebek, J. Jr J. Am. chem. Soc. 112, 1249–1250 (1990).

    Article  CAS  Google Scholar 

  5. Feng, Q., Park, T. K. & Rebek, J. Jr Science 256, 1179–1180 (1992).

    Article  ADS  CAS  Google Scholar 

  6. von Kiedrowski, G. Angew. Chem. int. Edn. engl. 25, 932–935 (1986).

    Article  Google Scholar 

  7. von Kiedrowski, G., Wlotzka, B. & Helbing, J. Angew. Chem. int. Edn engl. 28, 1235–1237 (1989).

    Article  Google Scholar 

  8. von Kiedrowski, G., Wlotzka, B., Helbing, J., Matzen, M. & Jordan, S. Angew. Chem. int. Edn. engl. 30, 423–426 (1991).

    Article  Google Scholar 

  9. Goodwin, J. T. & Lynn, D. G. J. Am. chem. Soc. 114, 9197–9198 (1992).

    Article  CAS  Google Scholar 

  10. Kanavarioti, A. J. theor. Biol. 158, 207–219 (1992).

    Article  CAS  Google Scholar 

  11. Eschenmoser, A. & Lowewenthal, E. Chem. Soc. Rev. 21, 1–16 (1992).

    Article  CAS  Google Scholar 

  12. Maher, L. J., Dervan, P. B. & Wold, B. J. Biochemistry 29, 8820–8826 (1990).

    Article  CAS  Google Scholar 

  13. Leubke, K. J. & Dervan, P. B. J. Am. chem. Soc. 111, 8733–8735 (1989).

    Article  Google Scholar 

  14. Inoue, T. & Orgel, L. E. Science 219, 859–862 (1983).

    Article  ADS  CAS  Google Scholar 

  15. Acevedo, O. L. & Orgel, L. E. J. molec. Biol. 197, 187–193 (1987).

    Article  CAS  Google Scholar 

  16. Chen, C. B., Inoue, T. & Orgel, L. E. J. molec. Biol. 181, 271–279 (1985).

    Article  CAS  Google Scholar 

  17. Kanavarioti, A., Bernasconi, C. F., Alberas, D. J. & Baird, E. E. J. Am. chem. Soc. 115, 8537–8546 (1993).

    Article  CAS  Google Scholar 

  18. Kanaya, E. & Yanagawa, H. Biochemistry 7423–7430 (1986).

    Article  CAS  Google Scholar 

  19. Miller, S. L. in Cold Spring Harbor Symp. quant. Biol. LB, 17–27 (1987).

    Article  Google Scholar 

  20. Gedulin, B. & Arrhenius, G. in Early Life on Earth (ed. Bengston, S.) 91–110 (Nobel. Symp. No. 84, Columbia Univ. Press, New York, 1993).

    Google Scholar 

  21. Ferris, J. P. & Ertem, G. J. Am. chem. Soc. 115, 12270–12275 (1993).

    Article  CAS  Google Scholar 

  22. Hunziker, J. et al. Helv. chim. Acta 76, 259–352 (1993).

    Article  CAS  Google Scholar 

  23. Eschenmoser, A. Chem. Biol. Introd. issue iv–v (1994).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, T., Nicolaou, K. Chemical self-replication of palindromic duplex DNA. Nature 369, 218–221 (1994). https://doi.org/10.1038/369218a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/369218a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing