Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Influence of atmospheric CO2 on the decline of C4 plants during the last deglaciation

Abstract

CHANGES in atmospheric carbon dioxide concentrations in the past may have caused changes in vegetation type1,2, and it has been suggested2 that the isotopic signature of such vegetation shifts, preserved in palaeosols3, might be used as a proxy for past CO2 variations. But the connection between palaeosol isotopic signatures and atmospheric CO2 concentrations has been difficult to establish, partly because of the unreliability of CO2 proxies and partly because of the difficulty in ruling out other potential causes of vegetation changes, such as climate4. Here we present palaeosol carbon isotope ratios that reveal a shift from C4-dominated grasses to C3-dominated shrubs about 7–9 kyr ago on an alluvial fan system in the Chihuahuan desert, New Mexico. This coincides with a rapid increase in atmospheric CO2 concentration recorded in Antarctic ice cores5–8 and increased aridity recorded by geo-morphic reconstructions9–11 and packrat remains12. Palaeosol oxygen isotope ratios, which depend on temperature and moisture, were relatively constant during the vegetation shift, suggesting that the CO2 change, rather than climate, was the dominant cause. We conclude that the carbon isotope ratios of ancient soils can indeed be used as a proxy for past CO2 changes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ehleringer, J. R., Sage, R. F., Flanagan, L. B. & Pearcy, R. W. Trends Ecol. Evol. 6, 95–99 (1991).

    Article  CAS  Google Scholar 

  2. Cerling, T. E., Wang, Y. & Quade, J. Nature 361, 344–345 (1993).

    Article  ADS  Google Scholar 

  3. Cerling, T. E. Earth planet. Sci. Lett 71, 229–240 (1984).

    Article  ADS  CAS  Google Scholar 

  4. Morgan, M. E., Kingston, J. D. & Marino, B. D. Nature 367, 162–165 (1994).

    Article  ADS  CAS  Google Scholar 

  5. Stauffer, B., Neftel, A., Oeschger, H. & Schwander, J. in Geophys. Monogr. 33 (eds Langway, C. C., Oeschger, H. and Dansgaard, W.) 85–90 (Am. Geophys. Union, Washington, DC, 1985).

    Google Scholar 

  6. Barnola, J. M., Raynaud, D., Korotkevich, Y. S. & Lorius, C. Nature 329, 408–414 (1987).

    Article  ADS  CAS  Google Scholar 

  7. Neftel, A., Oeschger, H., Stauffelbach, T. & Stauffer, B. Nature 331, 609–611 (1988).

    Article  ADS  Google Scholar 

  8. Leuenberger, M., Siegenthaler, U. & Langway, C. C. Nature 357, 488–490 (1992).

    Article  ADS  CAS  Google Scholar 

  9. Gile, L. H., Hawley, J. W. & Grossman, R. B. Memoir. No. 39 (New Mexico Bureau of Mines and Mineral Resources, Socorro, New Mexico, 1981).

  10. Holliday, V. T. Quat. Res. 31, 74–82 (1989).

    Article  Google Scholar 

  11. Waters, M. R. Quat. Res. 32, 1–11 (1989).

    Article  Google Scholar 

  12. Spaulding, W. G. Quat. Res. 35, 427–435 (1991).

    Article  Google Scholar 

  13. Seager, W. R. Memoir No. 36 (New Mexico Bureau of Mines and Mineral Resources, Socorro, New Mexico, 1981).

  14. Gile, L. H., Peterson, F. F. & Grossman, R. B. Soil Science 101, 347–360 (1966).

    Article  ADS  CAS  Google Scholar 

  15. Ruhe, R. V. Ann. Ass. amer. Geogr. 54, 147–159 (1964).

    Article  Google Scholar 

  16. Machette, M. N. in Soils and Quaternary Geology of the SW United States (ed. Weide, D. L.) 1–21 (Spec. Pap. No. 203, Geol. Soc. Am., Boulder, Colorado, 1985).

    Google Scholar 

  17. Gile, L. H. Soil Sci. Soc. Am. J. 51, 752–760 (1987).

    Article  ADS  Google Scholar 

  18. Gile, L. H. & Grossman, R. B. Desert Soil Monograph (Doc. No. PB80-13504, Natn. Inf. Serv., Springfield, Virginia, 1979).

    Google Scholar 

  19. Cerling, T. & Quade, J. in Climiate Change in Continental Isotopic Records (eds Swart, P. K., Lohmann, K. C., McKenzie, J. & Savin, S.) 217–231 (Geophys. Monogr. No. 78, Am. geophys. Un., 1993).

  20. Marino, B. D., McElroy, M. B., Salawitch, R. J. & Spaulding, W. G. Nature 357, 461–466 (1992).

    Article  ADS  CAS  Google Scholar 

  21. Cerling, T. E., Quade, J., Wang, Y. & Bowman, J. R. Nature 341, 138–139 (1989).

    Article  ADS  CAS  Google Scholar 

  22. Cerling, T. E. Amer. J. Sci. 291, 377–400 (1991).

    Article  ADS  CAS  Google Scholar 

  23. Van Devender, T. R. in Packrat Middens: The Last 40,000 Years of Biotic Change (eds Betanacourt, J. L., Van Devender, T. R. & Martin, P. S.) 104–133 (Univ. Ariz. Press, Tucson, 1990).

    Google Scholar 

  24. COHMAP Members Science 241, 1043–1052 (1988).

  25. Spaulding, W. G. & Graumlich, L. J. Nature 320, 441–444 (1986).

    Article  ADS  Google Scholar 

  26. Hawley, J. W. in Guidebook of the Las Cruces Country (eds Seager, W. R. et al.) 139–150 (New Mexico Geol. Soc., Socorro, 1975).

    Google Scholar 

  27. Cerling, T & Hay, R. L. Quat. Res. 25, 63–78 (1986).

    Article  CAS  Google Scholar 

  28. Wang, Y. et al., in Climate Change in Continental Isotopic Records (eds Swart, P. K., Lohmann, K. C., McKenzie, J. & Savin, S.) 217–231 (Geophys. Monogr. No. 78, Am. geophys. Un. 1993).

    Google Scholar 

  29. Mack, G. H., Cole, D. R., James, W. C., Giordano, T. H. & Salyards, S. Am. J. Sci. (in the press).

  30. Thompson, R. S. in Packrat Middens: The Last 40,000 Years of Biotic Change (eds Betanacourt, J. L., Van Devender, T. R. & Martin, P. S.) 200–239 (Univ. Ariz. Press, Tucson, 1990).

    Google Scholar 

  31. Long, A., Warneke, L. A., Betanacourt, J. L. & Thompson, R. S. in Packrat Middens: The Last 40,000 Years of Biotic Change (eds, Betanacourt, J. L., Van Devender, T. R. & Martin, P. S.) 380–396 (Univ. Ariz. Press, Tucson, 1990).

    Google Scholar 

  32. Polley, H. W., Johnson, H. B., Marino, B. D. & Mayeux, H. S. Nature 361, 61–64 (1993).

    Article  ADS  Google Scholar 

  33. Mayeux, H. S., Johnson, H. B. & Polley, H. W. in Noxious Range Weeds (eds James, L. F., Evans, J. O., Ralphs, M. H. & Child, R. D.) 62–74 (Westview, Boulder, 1991).

    Google Scholar 

  34. Quade, J., Cerling, T. E. & Bowman, J. R. Geol. Soc. Am. Bull. 101, 464–475 (1989).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cole, D., Monger, H. Influence of atmospheric CO2 on the decline of C4 plants during the last deglaciation. Nature 368, 533–536 (1994). https://doi.org/10.1038/368533a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/368533a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing