Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Biological activity of soluble wingless protein in cultured Drosophila imaginal disc cells

Abstract

THE phenotypes caused by mutations in Wnt genes suggest that their gene products are involved in cell-to-cell communication1–6. Wnt genes indeed encode secreted molecules7–10, but soluble active Wnt protein has not been found. We have developed a novel cell culture assay for the Drosophila Wnt gene wingless11,12, using a Drosophila imaginal disc cell line (cl-8; ref. 13), and measured effects on the adherens junction protein armadillo14,15, a known genetic target of wingless16. Transfection of a temperature-sensitive wingless complementary DNA into cl-8 cells increases the levels of the armadillo protein. The wingless protein does not affect the rate of synthesis of armadillo, but leads to increased stability of an otherwise rapidly decaying armadillo protein. The wingless protein in the extracellular matrix and soluble medium from donor cells also increases the levels of armadillo protein. The protein in the medium acts fast and is inhibited by an antibody to wingless protein, demonstrating that Wnt products can act as soluble extracellular signalling molecules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Nusse, R. & Varmus, H. E. Cell 69, 1073–1087 (1992).

    Article  CAS  PubMed  Google Scholar 

  2. McMahon, A. P. Trends Genet. 8, 236–242 (1992).

    Article  CAS  Google Scholar 

  3. McMahon, A. P., Joyner, A. L., Bradley, A. & McMahon, J. A. Cell 69, 581–595 (1992).

    Article  CAS  PubMed  Google Scholar 

  4. Struhl, G. & Basler, K. Cell 72, 527–540 (1993).

    Article  CAS  PubMed  Google Scholar 

  5. DiNardo, S., Sher, E., Heemskerk-Jongens, J., Kassis, J. & O'Farrell, P. Nature 332, 604–609 (1988).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chu-Lagraff, Q. & Doe, C. Science 261, 1594–1597 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Van den Heuvel, M., Nusse, R., Johnston, P. & Lawrence, P. A. Cell 59, 739–749 (1989).

    Article  CAS  PubMed  Google Scholar 

  8. Papkoff, J. & Schryver, B. Molec. cell. Biol. 10, 2723–2730 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bradley, R. S. & Brown, A. M. EMBO J. 9, 1569–1575 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. González, F., Swales, L., Bejsovec, A., Skaer, H. & Martinez-Arias, A. Mech. Dev. 35, 43–54 (1991).

    Article  PubMed  Google Scholar 

  11. Rijsewijk, F. et al. Cell 50, 649–657 (1987).

    Article  CAS  PubMed  Google Scholar 

  12. Baker, N. E. EMBO J. 6, 1765–1773 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Peel, D. J. & Milner, M. J. Wilhelm Roux Arch. dev. Biol. 201, 120–123 (1992).

    Article  Google Scholar 

  14. Peifer, M. & Wieschaus, E. Cell 63, 1167–1178 (1990).

    Article  CAS  PubMed  Google Scholar 

  15. McCrea, P. D., Turck, C. W. & Gumbiner, B. Science 254, 1359–1361 (1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Riggleman, B., Schedl, P. & Wieschaus, E. Cell 63, 549–560 (1990).

    Article  CAS  PubMed  Google Scholar 

  17. van den Heuvel, M., Harryman-Samos, C., Klingensmith, J., Perrimon, N. & Nusse, R. EMBO J. 12, 5293–5302 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bejsovec, A. & Martinez-Arias, A. Development 113, 471–485 (1991).

    CAS  PubMed  Google Scholar 

  19. Cumberledge, S. & Krasnow, M. A. Nature 363, 549–552 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Noordermeer, J., Klingensmith, J., Perrimon, N. & Nusse, R. Nature 367, 80–83 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Peifer, M., Sweeton, D., Casey, M. & Wieschaus, E. Development 120, 369–370 (1994).

    CAS  PubMed  Google Scholar 

  22. Siegfried, E., Wilder, E. & Perrimon, N. Nature 367, 76–80 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Bourouis, M. et al. EMBO J. 9, 2877–2884 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Siegfried, E., Perkins, L. A., Capaci, T. M. & Perrimon, N. Nature 345, 825–829 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Currie, D. A., Milner, M. J. & Evans, C. W. Development 102, 804–814 (1988).

    Google Scholar 

  26. Koelle, M. R. et al. Cell 67, 59–77 (1991).

    Article  CAS  PubMed  Google Scholar 

  27. Peifer, M. J. Cell Sci. 105, 993–1000 (1993).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Leeuwen, F., Samos, C. & Nusse, R. Biological activity of soluble wingless protein in cultured Drosophila imaginal disc cells. Nature 368, 342–344 (1994). https://doi.org/10.1038/368342a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/368342a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing