Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Production of 26A1 and other extinct radionuclides by low-energy heavy cosmic rays in molecular clouds

Abstract

THE high abundance of radioactive 26A1 in meteoritic materials1 presents a puzzle in attempts to describe the formation of the Solar System. It has been suggested11 that collapse of the solar nebula may have been accompanied by an injection of 26A1 from nucleosynthesis in a neighbouring star. The relatively high level of 26A1 in the interstellar medium2,3 is also unexplained. Here I suggest that this isotope may be formed in nuclear reactions between hydrogen and heavy cosmic rays. This suggestion is prompted by the recent discovery4 of γ-ray line emission from 12C and 16O in the Orion cloud complex, thought to be caused by the interaction of these cosmic-ray ions with interstellar hydrogen. I show that these observations also imply enhanced production of 26A1 in the Orion molecular clouds, and that such nuclear reactions can account for the meteoritic abundances. Reactions involving heavy cosmic rays might also account for the presence of other extinct radioactive nuclides in meteorites.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lee, T., Papanastassiou, D. A. & Wasserburg, G.J. Astrophys. J. 211, L107–L110 (1977).

    Article  ADS  CAS  Google Scholar 

  2. Share, G. H. et al. Astrophys. J. 292, L61–L65 (1985).

    Article  ADS  CAS  Google Scholar 

  3. Diehl, R. et al. in Compton Gamma Ray Observatory (eds Friedlander, M., Gehrels, N. & Macomb, D.) 40–46 (Am. Inst. Phys., New York, 1993).

    Google Scholar 

  4. Bloemen, H. et al. Astr. Astrophys. 281, L5–L8 (1994).

    ADS  CAS  Google Scholar 

  5. Ramaty, R., Kozlovsky, B., & Lingenfelter, R. Astrophys. J. Suppl. Ser. 40, 487–522 (1979).

    Article  ADS  CAS  Google Scholar 

  6. Mewaldt, R. A. Rev. Geophys. Space Phys. 21, 295–305 (1983).

    Article  ADS  CAS  Google Scholar 

  7. Kozlovsky, B., Lingenfelter, R. & Ramaty, R. Astrophys. J. 316, 801–818 (1987).

    Article  ADS  CAS  Google Scholar 

  8. Clayton, D. D., Dwek, E. & Woosley, S. E. Astrophys. J. 214, 300–315 (1977).

    Article  ADS  CAS  Google Scholar 

  9. Lang, F. L., Werntz, C.W., Crannell, C. J., Trombka, J. I. & Chang, C. C. Phys. Rev. C35, 1214–1227 (1987).

    ADS  CAS  Google Scholar 

  10. Clayton, D. D., Hartmann, D. H. & Leising, M. D. Astrophys. J. 415, L25–L29 (1993).

    Article  ADS  Google Scholar 

  11. Cameron, A. G. W. in Protostars and Planets Vol. 3, (eds Levy, E. & Lunine, J.) 47 (Univ. of Arizona, Tucson, 1993).

    Google Scholar 

  12. MacPherson, G. J., Wark, D. A. & Armstrong, J. T. in Meteorites and the Early Solar System (eds Kerridge, J. F. & Mathews, M. S.) 746–807 (Univ. of Arizona, Tucson, 1988).

    Google Scholar 

  13. Virag, A., Zinner, E., Amari, S. & Anders, E. Geochim. cosmochim. Acta 55, 2045–2062 (1991).

    Article  ADS  CAS  Google Scholar 

  14. Shokulyukov, A. & Lugmair, G. Science 259, 1138–1142 (1993).

    Article  ADS  Google Scholar 

  15. Wasserburg, G. J., Busso, M., Gallino, R. & Raiteri, C. M. Astrophys. J. (in the press).

  16. Birck, J.-L. & Lugmair, G. Earth planet. Sci. Lett. 90, 131–135 (1988).

    Article  ADS  CAS  Google Scholar 

  17. Clayton, D. D. Nature 257, 36–37 (1975).

    Article  ADS  CAS  Google Scholar 

  18. Podosek, F. A. & Swindle, T. D. in Meteorites and the Early Solar System (eds Kerridge, J. F. & Mathews, M. S.) 1093–1146 (Univ. of Arizona, Tucson, 1988).

    Google Scholar 

  19. Clayton, D. D. Astrophys. J. 268, 381–384 (1983).

    Article  ADS  CAS  Google Scholar 

  20. Clayton, D. D. & Leising, M. D. in Compton Gamma Ray Observatory Symposium 2 (ed. Gehrels, N.) (Am. Inst. Phys., New York, in the press).

  21. Harper, C. L. & Wiesmann, H. Astrophys. J. (submitted).

  22. Birck, J. L. & Allegre, C. J. Geophys. Res. Lett. 12, 745–748 (1985).

    Article  ADS  CAS  Google Scholar 

  23. Lugmair, G. W., Maclsaac, C. & Shukolyukov, A. Lunar planet. Sci. 23, 823–824 (1992).

    ADS  Google Scholar 

  24. Kelly, W. R. & Wasserburg, D. J. Geophys. Res. Lett. 5, 1079–1082 (1978).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clayton, D. Production of 26A1 and other extinct radionuclides by low-energy heavy cosmic rays in molecular clouds. Nature 368, 222–224 (1994). https://doi.org/10.1038/368222a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/368222a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing