Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Geomagnetic field morphologies from a kinematic dynamo model

Abstract

THE Earth's magnetic field is generated by flow of liquid iron in the outer core, acting as a dynamo. In the simple kinematic theory a fluid flow is prescribed and tested for its ability to generate magnetic field, no account being taken of the forces required to drive the flow. Although incomplete, kinematic theory gives valuable insight into the more difficult dynamical problem and produces field morphologies which can be compared with observations. We are attempting a comprehensive study of three-dimensional kinematic dynamo action for a class of fluid flow typical of that driven by convection (G.S. and D.G., manuscript in preparation), and have already found similarities between steady dipole solutions and the geomagnetic field1. Here we examine the effect of meridian circulation in determining the stability of steady and oscillatory solutions. The magnetic field morphology on both sides of the stability boundary is determined by magnetic flux concentration by downwelling fluid2. The oscillatory dipole reverses polarity through the appearance and poleward migration of patches of reversed flux, similar to those seen in today's geomagnetic field3. Virtual geomagnetic poles computed from the reversing field follow paths that are concentrated along the longitudes of maximum flux, suggesting a link with recent palaeomagnetic results4–7.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hutcheson, K. A. & Gubbins, D. Geophys. J. Int. 116, 304–320 (1994).

    Article  ADS  Google Scholar 

  2. Gubbins, D. in Flow and Creep in the Solar System: Observations, Modelling and Theory (eds Stone, D. B. & Runcorn, S. K.) 97–111 (Kluwer, Dordrecht, 1993).

    Book  Google Scholar 

  3. Gubbins, D. Nature 326, 167–169 (1987).

    Article  ADS  Google Scholar 

  4. Merill, R. T. & McElhinny, M. W. in The Earth's Magnetic Field: Its History, Origin and Planetary Perspective Ch. 5 (Academic, San Diego, 1983).

    Google Scholar 

  5. Gubbins, D. & Kelly, P. Nature 365, 829–832 (1993).

    Article  ADS  Google Scholar 

  6. Tric, E. C. et al. Phys. Earth planet. Inter. 65, 319–336 (1991).

    Article  ADS  Google Scholar 

  7. Clement, B. M. Earth planet. Sci. Lett. 104, 48–58 (1991).

    Article  ADS  Google Scholar 

  8. Levy, E. H. Astrophys. J. 171, 621–633 (1972).

    Article  ADS  Google Scholar 

  9. Levy, E. H. Astrophys. J. 171, 635–642 (1972).

    Article  ADS  Google Scholar 

  10. Parker, E. N. in Cosmical Magnetic Fields: Their Origin and Their Activity Ch. 19 (Clarendon, Oxford, 1979).

    Google Scholar 

  11. Bullard, E. C. & Gellman, H. Proc. R. Soc. A247, 213–278 (1954).

    Google Scholar 

  12. Lilley, F. E. M. Proc. R. Soc. A316, 153–167 (1970).

    Article  ADS  Google Scholar 

  13. Gibson, R. D. & Roberts, P. H. in The Application of Modern Physics to the Earth and Planetary Interiors (ed. Runcorn, S. K.) 577–602 (Wiley Interscience, New York, 1969).

    Google Scholar 

  14. Gubbins, D. Phil. Trans. R. Soc. A274, 493–521 (1973).

    Article  ADS  Google Scholar 

  15. Dudley, M. L. & James, R. W. Proc. R. Soc. A425, 407–429 (1989).

    Article  ADS  Google Scholar 

  16. Braginsky, S. I. Soviet. Phys. JET P 20, 726–735 (1965).

    Google Scholar 

  17. Roberts, P. H. Phil. Trans. R. Soc. A271, 663–697 (1972).

    Article  ADS  Google Scholar 

  18. Moffatt, H. K. in Magnetic Field Generation in Electrically Conducting Fluids Ch. 9 (Cambridge Univ. Press, 1978).

    Google Scholar 

  19. Malkus, W. V. R. & Proctor, M. R. E. J. Fluid Mech. 67, 417–443 (1975).

    Article  ADS  Google Scholar 

  20. Jennings, R. L. & Weiss, N. O. Mon. Not. R. astr. Soc. 252, 249–260 (1991).

    Article  ADS  Google Scholar 

  21. Hagee, V. L. & Olson, P. J. geophys. Res. 96, 11673–11687 (1991).

    Article  ADS  Google Scholar 

  22. Hollerbach, R. & Jones, C. A. Nature 365, 541–543 (1993).

    Article  ADS  Google Scholar 

  23. Kumar, S. & Roberts, P. H. Proc. R. Soc. A344, 235–238 (1975).

    Article  ADS  Google Scholar 

  24. Tric, E. C. et al. J. geophys. Res. 97, 9337–9351 (1992).

    Article  ADS  Google Scholar 

  25. Laj, C., Mazaud, A., Weeks, R., Fuller, M. & Herrero-Bervera, E. Nature 351, 447 (1991).

    Article  ADS  Google Scholar 

  26. Gubbins, D. & Coe, R. Nature 362, 51–53 (1993).

    Article  ADS  Google Scholar 

  27. Honkura, Y., Iijima, T. & Marsushima, M. J. Geomag. Geoelectr. 44, 931–941 (1992).

    Article  ADS  Google Scholar 

  28. Gubbins, D. & Bloxham, J. Nature 325, 509–511 (1987).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gubbins, D., Sarson, G. Geomagnetic field morphologies from a kinematic dynamo model . Nature 368, 51–55 (1994). https://doi.org/10.1038/368051a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/368051a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing