Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Rapid interglacial climate fluctuations driven by North Atlantic ocean circulation

Abstract

RECENT data from the GRIP ice core1–3 in Greenland suggest that the climate of the last (Eemian) interglacial period was much less stable than that of the present interglacial. Rapid transitions between warm and cold periods were found to occur on timescales of just a few decades. The North Atlantic climate during the Eemian period was also shown to be characterized by three states, respectively warmer than, similar to and colder than today1,2. Recent data from the nearby GISP2 ice core have revealed some discrepancies with these findings, which remain to be resolved4,5. Here we present simulations using an idealized global ocean model, which suggest that the North Atlantic ocean has three distinct circulation modes, each of which corresponds to a distinct climate state. We find that adding a simple random component to the mean freshwater flux (which forces circulation) can induce rapid transitions between these three modes. We suggest that increased variability in the hydrological cycle associated with the warmer Eemian climate could have caused transition between these distinct modes in the North Atlantic circulation, which may in turn account for the apparent rapid variability of the Eemian climate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. GRIP Project Members Nature 364, 203–207 (1993).

  2. Dansgaard, W. et al. Nature 364, 218–220 (1993).

    Article  ADS  Google Scholar 

  3. White, J. W. C. Nature 364, 186 (1993).

    Article  ADS  Google Scholar 

  4. Taylor, K. C. et al. Nature 366, 549–552 (1993).

    Article  ADS  CAS  Google Scholar 

  5. Grootes, P. M., Stuiver, M., White, J. W. C., Johnsen, S. & Jouzel, J. Nature 366, 552–554 (1993).

    Article  ADS  CAS  Google Scholar 

  6. Dansgaard, W. et al. Science 218, 1273–1277 (1982).

    Article  ADS  CAS  Google Scholar 

  7. Dansgaard, W. et al. in Climate Processes and Climate Sensitivity (eds Hansen, J. E. & Takahashi, T.) 288–298 (Geophys. Monogr. No. 29, Am. geophys. Un., Washington DC, 1984).

    Book  Google Scholar 

  8. Dansgaard, W., White, J. W. C. & Johnson, S. J. Nature 339, 532–534 (1989).

    Article  ADS  Google Scholar 

  9. Broecker, W. S., Peteet, D. M. & Rind, D. Nature 315, 21–26 (1985).

    Article  ADS  CAS  Google Scholar 

  10. Broecker, W. S. et al. Paleoceanography 3, 1–19 (1988).

    Article  ADS  Google Scholar 

  11. Keigwin, L. A., Jones, G. A. & Lehman, S. J. J. geophys. Res. 96, 16811–16826 (1991).

    Article  ADS  Google Scholar 

  12. Dansgaard, W., Johnsen, S. J., Clausen, H. B. & Langway, C. C. in The Late Cenozoic Glacial Ages (ed. Turekian, K. K.) 37–56 (Yale Univ. Press, New Haven, 1971).

    Google Scholar 

  13. Hibler, W. D. & Johnsen, S. J. Nature 280, 481–483 (1979).

    Article  ADS  Google Scholar 

  14. Birchfield, G. E. & Broecker, W. S. Paleoceanography 5, 835–843 (1990).

    Article  ADS  Google Scholar 

  15. Broecker, W. S., Bond, G. & Klas, M. Paleoceanography 5, 469–477 (1990).

    Article  ADS  Google Scholar 

  16. Cox, M. D. Tech. Rep. No. 1 (GFDL Ocean Group, Princeton University, New Jersey, 1984).

    Google Scholar 

  17. Bryan, F. J. phys. Oceanogr. 17, 970–985 (1987).

    Article  ADS  Google Scholar 

  18. Levitus, S. NOAA Prof. Pap. No. 13 (US Department of Commerce, NOAA, Rockville, 1982).

    Google Scholar 

  19. Weaver, A. J., Sarachik, E. S. & Marotzke, J. Nature 353, 836–838 (1991).

    Article  ADS  Google Scholar 

  20. Hughes, T. M. C. & Weaver, A. J. J. phys. Oceanogr. (in the press).

  21. Weaver, A. J., Marotzke, J., Cummins, P. F. & Sarachik, E. S. J. phys. Oceanogr. 23, 39–60 (1993).

    Article  ADS  Google Scholar 

  22. Hasselmann, K. Tellus 28, 473–485 (1976).

    Article  ADS  Google Scholar 

  23. Mikolajewicz, U. & Maier-Reimer, E. Clim. Dynam. 4, 145–156 (1990).

    Article  ADS  Google Scholar 

  24. Baumgartner, A. & Reichel, E. The World Water Balance (Elsevier, New York, 1975).

    Google Scholar 

  25. Manabe, S. & Stouffer, R. J. Nature 364, 215–218 (1993).

    Article  ADS  CAS  Google Scholar 

  26. Stocker, T. F. & Wright, D. G. Nature 351, 729–732 (1991).

    Article  ADS  Google Scholar 

  27. Bryan, F. Nature 323, 301–304 (1986).

    Article  ADS  CAS  Google Scholar 

  28. Broecker, W. Oceanography 4, 79–89 (1991).

    Article  Google Scholar 

  29. Maier-Reimer, E. & Mikolajewicz, U. in Oceanography (eds Ayala-Castanares, A. et al.) 87–100 (UNAM Press, Mexico, 1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weaver, A., Hughes, T. Rapid interglacial climate fluctuations driven by North Atlantic ocean circulation. Nature 367, 447–450 (1994). https://doi.org/10.1038/367447a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/367447a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing