Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Sex ratio bias, relatedness asymmetry and queen mating frequency in ants

Abstract

HAMILTON'S rule and the principle of inclusive fitness1 provide a theoretical basis for understanding the evolution of social behaviour, and a framework for predicting reproductive characteristics of social insect colonies2–1. Sex allocation in social insects (especially ants) has become a central factor in tests of inclusive fitness theory5–9. The most powerful such test is the analysis of individual colonies where the predicted sex allocation varies depending on variation in worker fitness functions10,11. Recently developed models5,12 predict that workers may enhance their inclusive fitness by biasing sex ratios in response to the degree of related-ness asymmetry in each colony. Here I provide the first empirical evidence of facultative sex ratio biasing in response to relatedness asymmetries caused by inter-colony variations in queen mating frequencies. In a Finnish population of the ant Formica truncovum, colonies have a single queen mated to one or several males. Colonies show a bimodal distribution of sex ratios, with a significantly greater proportion of males in colonies headed by a multiply mated queen.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hamilton, W. D. J. theor. Biol. 7, 1–52 (1964).

    Article  CAS  Google Scholar 

  2. Trivers, R. L. & Hare, H. Science 191, 249–263 (1976).

    Article  ADS  CAS  Google Scholar 

  3. Benford, F. A. J. theor. Biol. 72, 701–727 (1978).

    Article  CAS  Google Scholar 

  4. Pamilo, P. Am. Nat. 137, 83–107 (1991).

    Article  Google Scholar 

  5. Boomsma, J. J. & Grafen, A. Evolution 44, 1026–1034 (1990).

    Article  CAS  Google Scholar 

  6. Nonacs, P. Q. Rev. Bio. 57, 109–133 (1986).

    Google Scholar 

  7. van der Have, T. M., Boomsma, J. J. & Menken, S. B. J. Evolution 42, 160–172 (1988).

    Article  CAS  Google Scholar 

  8. Ward, P. S. Behav. Ecol. Sociobiol. 12, 301–307 (1983).

    Article  Google Scholar 

  9. Pamilo, P. Behav. Ecol. Sociobiol. 27, 31–36 (1990).

    Article  Google Scholar 

  10. Grafen, A. J. theor. Biol. 122, 95–121 (1986).

    Article  Google Scholar 

  11. Crozier, R. H. & Pamilo, P. in Evolution and Diversity of Sex Ratio in Insects and Mites (eds Wrensch, D. L. & Ebbert, M. A.) 369–383 (Chapman Hall, New York, 1992).

    Google Scholar 

  12. Boomsma, J. J. & Grafen, A. J. evol. Biol. 3, 383–407 (1991).

    Article  Google Scholar 

  13. Boomsma, J. J. Am. Nat. 133, 517–532 (1989).

    Article  Google Scholar 

  14. Alexander, R. D. & Sherman, P. W. Science 196, 494–500 (1977).

    Article  ADS  CAS  Google Scholar 

  15. Nonacs, P. Evolution 40, 199–204 (1986).

    Article  Google Scholar 

  16. Hamilton, W. D. Science 156, 477–488 (1967).

    Article  ADS  CAS  Google Scholar 

  17. Frank, S. A. Theor. Populat. Biol. 31, 47–74 (1987).

    Article  CAS  Google Scholar 

  18. Frank, S. A. Behav. Ecol. Sociobiol. 20, 195–201 (1987).

    Article  Google Scholar 

  19. Ratnieks, F. L. W. Evolution 45, 281–292 (1991).

    Article  Google Scholar 

  20. Boomsma, J. J. Trends ecol. Evol. 6, 92–95 (1991).

    Article  CAS  Google Scholar 

  21. Mueller, U. G. Science 254, 442–444 (1991).

    Article  ADS  CAS  Google Scholar 

  22. Ratnieks, F. L. W. J. theor. Biol. 142, 87–93 (1990).

    Article  Google Scholar 

  23. Brian, M. V. Social Insects (Chapman Hall, London, 1983).

    Book  Google Scholar 

  24. Gösswald, K. Die Waldameise Vol. 1 (AULA, Wiesbaden, 1989).

    Google Scholar 

  25. Cole, B. J. Behav. Ecol. Sociobiol. 12, 191–201 (1983).

    Article  Google Scholar 

  26. Page, R. E. A. Rev. Ent. 31, 297–320 (1986).

    Article  Google Scholar 

  27. Sundström, L. Behav. Ecol. Sociobiol. (in the press).

  28. Nonacs, P. in Evolution and Diversity of Sex Ratio in Insects and Mites (eds Wrensch, D. L. & Ebbert, M. A.) 384–401 (Chapman Hall, New York, 1992).

    Google Scholar 

  29. Clark, A. B. Science 201, 163–165 (1978).

    Article  ADS  CAS  Google Scholar 

  30. Seppä, P. Behav. Ecol. Sociobiol. 30, 253–260 (1992).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sundström, L. Sex ratio bias, relatedness asymmetry and queen mating frequency in ants. Nature 367, 266–268 (1994). https://doi.org/10.1038/367266a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/367266a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing