Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A high-resolution record of atmospheric CO2 content from carbon isotopes in pet

Abstract

OUR understanding of how future changes in atmospheric carbon-dioxide concentrations will affect the global climate system arises in part from comparing past changes in climate and CO2. To date, these comparisons have come mainly from ice-core data, which show a strong correlation between past atmospheric CO2 concentration and polar temperature1. Here we present a new method for reconstructing atmospheric CO2 concentration using the 13C/12C ratio (δ13C) in mosses and sedges in peat. Our method exploits the fact that, unlike sedges and most other plants, mosses do not possess stomata, and are therefore unable to regulate their uptake of CO2 and water. The δ13C of mosses thus depends on both atmospheric CO2 concentration and available water, and the δ13C of sedges from the same peat can be used to remove the water signal. The method provides a resolution of about a decade–much higher than is possible from ice cores. We present initial results for the past 14,000 years, which show three sharp increases in atmospheric CO2 concentration: at 12,800 years ago, corresponding to an episode of warming in the North Atlantic region; 10,000 years ago, corresponding to the end of the Younger Dryas cold period; and 4,400 years ago, after which time modern climates were established globally.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Barnola, J. M., Raynaud, D., Korotkevich, Y. S. & Lorius, C. Nature 329, 408–414 (1987).

    Article  ADS  CAS  Google Scholar 

  2. Markgraf, V. Palaeogeogr, Palaeoclimatol. Palaeoecol. 102, 53–68 (1993);

    Article  Google Scholar 

  3. Markgraf, V., Dodson, J. R., Kershaw, A. P., McGlone, M. S. & Nicholls, N. Clim. Dynam. 6, 193–211 (1991).

    Article  ADS  Google Scholar 

  4. DeNiro, M. J. Earth planet. Sci. Lett. 54, 177–185 (1981).

    Article  ADS  CAS  Google Scholar 

  5. Epstein, S., Yapp, C. J. & Hall, J. H. Earth planet. Sci. Lett. 30, 241–251 (1976).

    Article  ADS  CAS  Google Scholar 

  6. Green, J. W. in Methods in Carbohydrate Chemistry (ed. Whistler, R. L.) 110–135 (Academic, New York, 1963).

    Google Scholar 

  7. Farquhar, G. D., Hubick, K. T., Condon, A. G. & Richards, R. A. in Stable Isotopes in Ecological Research (eds Rundel, P. W., Ehleringer, J. R. & Nagy, K. A.) 21–40 (Springer, New York, 1988).

    Google Scholar 

  8. Farquhar, G. D., O'Leary, M. H. & Berry, J. A. Aust. J. Plant Physiol. 9, 121–137 (1982).

    CAS  Google Scholar 

  9. Oechel, W. C. & Sveinbjornsson, B. in Vegetation and Production Ecology of the Alaskan Arctic Tundra (ed. Tieszen, L. L.) 269–298 (Springer, New York, 1978).

    Book  Google Scholar 

  10. Bonan, G. B. J. geophys. Res. 96, 7301–7312 (1991).

    Article  ADS  CAS  Google Scholar 

  11. Oechel, W. C. Photosynthetica 10, 447–456 (1987).

    Google Scholar 

  12. Miller, P. C. et al. Ecol. Monogr. 54, 361–405 (1984).

    Article  CAS  Google Scholar 

  13. Longton, R. E. The Biology of Polar Bryophytes and Lichens (Cambridge Univ. Press, 1988).

    Book  Google Scholar 

  14. Sveinbjornsson, B. & Oechel, W. C. in Bryophytes and Lichens in a Changing Environment (eds Bates, J. W. & Farmer, A. M.) (Oxford Univ. Press, 1992).

    Google Scholar 

  15. Dilks, T. J. K. & Proctor, M. C. F. New Phytol. 82, 97–114 (1979).

    Article  Google Scholar 

  16. Reynolds, F. A. et al. Modeling the Response of Plants and Ecosystems to Elevated CO2 and Climate Change (US Dep. of Energy, Washington DC, 1992).

    Google Scholar 

  17. Ball, T. thesis, Stanford Univ. (1988).

  18. Polley, H. W., Johnson, H. B., Marino, B. D. & Mayeux, H. S. Nature 361, 61–64 (1993).

    Article  ADS  Google Scholar 

  19. Silvola, J. Lindbergia 11, 86–93 (1985).

    Google Scholar 

  20. Marino, B. D., McElroy, M. B., Salawitch, R. J. & Spaulding, W. G. Nature 357, 461–466 (1992).

    Article  ADS  CAS  Google Scholar 

  21. Leuenberger, M., Siegenthaler, U. & Langway, C. C. Nature 357, 488–490 (1992).

    Article  ADS  CAS  Google Scholar 

  22. Neftel, A., Moor, E., Oeschger, H. & Stauffer, B. Nature 315, 45–47 (1985).

    Article  ADS  CAS  Google Scholar 

  23. Friedli, H., Lötscher, H., Oeschger, H., Siegenthaler, U. & Stauffer, B. Nature 324, 237–238 (1986).

    Article  ADS  CAS  Google Scholar 

  24. Siegenthaler, U. & Oeschger, H. Tellus 39B, 140–154 (1987).

    Article  ADS  CAS  Google Scholar 

  25. Neftel, A., Oeschger, H., Staffelbach, T., Stauffer, B. Nature 331, 609–611 (1988).

    Article  ADS  Google Scholar 

  26. Sowers, T., Bender, M., Raynaud, D. & Korotkevitch, Y. S. J. geophys. Res. 97, 15683–15697 (1992).

    Article  ADS  CAS  Google Scholar 

  27. McGlone, M. S., Kershaw, A. P. & Markgraf, V. in El Nin̄o; Historical and Paleoclimatic Aspects of the Southern Oscillation (eds Diaz, H. F. & Markgraf, V.) (Cambridge Univ. Press, 1992).

    Google Scholar 

  28. Huntley, B. & Webb, T. (eds) Handbook of Vegetation Science (Kluwer, Dordrecht, 1988).

  29. Charles, C. & Fairbanks, R. Nature 355, 416–419 (1992).

    Article  ADS  Google Scholar 

  30. Lehman, S. J. & Keigwin, L. D. Nature 356, 757–762 (1992).

    Article  ADS  Google Scholar 

  31. Brooks, A. & Farquhar, G. D. Planta 165, 397–406 (1985).

    Article  CAS  Google Scholar 

  32. Proctor, M. C. F., Raven, J. A. & Rice, S. K. J. Bryol. 17, 193–202 (1992).

    Article  Google Scholar 

  33. Proctor, M. C. F. in Plants and their Atmospheric Environment (eds Grtace, J., Ford, E. D. & Jarvis, P. G.) (Blackwell, Oxford, 1981).

    Google Scholar 

  34. Bard, E., Hamelin, B., Fairbanks, R. G. & Zindler, A. Nature 345, 405–410 (1990).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

White, J., Ciais, P., Figge, R. et al. A high-resolution record of atmospheric CO2 content from carbon isotopes in pet. Nature 367, 153–156 (1994). https://doi.org/10.1038/367153a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/367153a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing