Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Support for anisotropy of the Earth's inner core from free oscillations

Abstract

IN 1983, Poupinet et al.1 observed that compressional seismic waves traversing the inner core along a trajectory parallel to the Earth's rotation axis arrive faster than the same (PKIKP) waves travelling in the equatorial plane. They interpreted this observation as revealing prolate topography of the inner-core boundary. In 1986, Morelli et al.2 and Woodhouse et al.3 suggested that inner-core anisotropy could explain both the travel-time observations and the anomalous splitting of some of the Earth's normal modes. Inner-core anisotropy continues to be the preferred explanation for the travel-time anomalies, although there is disagreement about the magnitude of anisotropy4–6. More recent explanations for the anomalous splitting involve topography of the inner-core and core–mantle boundaries as well as lateral heterogeneity of the core7–11. In particular, Widmer et al.11 dismissed a rather complex recent model of inner-core anisotropy12 because it could not explain the splitting of several previously unidentified modes. Here I show that the anomalous splitting of all currently identified modes can in fact be explained by cylindrical anisotropy of the Earth's inner core that is also compatible with the observed PKIKP travel-time anomalies. The resulting model should be regarded as an upper limit to the amount of anisotropy, as lateral heterogeneity also undoubtedly contributes to the splitting.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Poupinet, G., Pillet, R. & Souriau, A. Nature 305, 204–206 (1983).

    Article  ADS  Google Scholar 

  2. Morelli, A., Dziewonski, A. M. & Woodhouse, J. H. Geophys. Res. Lett. 13, 1545–1548 (1986).

    Article  ADS  Google Scholar 

  3. Woodhouse, J. H., Giardini, D. & Li, X.-D. Geophys. Res. Lett. 13, 1549–1552 (1986).

    Article  ADS  Google Scholar 

  4. Shearer, P. M. & Toy, K. M. & Orcutt, J. A. Nature 333, 228–232 (1988).

    Article  ADS  Google Scholar 

  5. Shearer, P. M. & Toy, K. M. J. geophys. Res. 96, 2233–2247 (1991).

    Article  ADS  Google Scholar 

  6. Creager, K. C. Nature 356, 309–314 (1992).

    Article  ADS  Google Scholar 

  7. Ritzwoller, M., Masters, G. & Gilbert, F. J. geophys. Res. 91, 10203–10228 (1986).

    Article  ADS  Google Scholar 

  8. Giardini, D., Li, X.-D. & Woodhouse, J. H. Nature 325, 405–411 (1987).

    Article  ADS  Google Scholar 

  9. Ritzwoller, M., Masters, G. & Gilbert, F. J. geophys. Res. 93, 6369–6396 (1988).

    Article  ADS  Google Scholar 

  10. Giardini, D., Li, X.-D. & Woodhouse, J. H. J. geophys. Res. 93, 13716–13742 (1988).

    Article  ADS  Google Scholar 

  11. Widmer, R., Masters, G. & Gilbert, F. Geophys. J. Int. 111, 559–576 (1992).

    Article  ADS  Google Scholar 

  12. Li, X.-D., Giardini, D. & Woodhouse, J. H. J. geophys. Res. 96, 551–557 (1991).

    Article  ADS  Google Scholar 

  13. Dziewonski, A. M. & Anderson, D. L. Phys. Earth planet. Inter. 25, 297–356 (1981).

    Article  ADS  Google Scholar 

  14. Woodhouse, J. H. & Dahlen, F. A. Geophys. J. R. astr. Soc. 53, 335–354 (1978).

    Article  ADS  Google Scholar 

  15. Masters, G. & Gilbert, F. Geophys. Res. Lett. 8, 569–571 (1981).

    Article  ADS  Google Scholar 

  16. Stevenson, D. Geophys. J. R. astr. Soc. 88, 311–319 (1987).

    Article  ADS  Google Scholar 

  17. Love, A. E. H. A Treatise on the Mathematical Theory of Elasticity 4th edn (Cambridge Univ. Press, 1927).

    MATH  Google Scholar 

  18. Michelini, A. & McEvilly, T. V. Bull. seism. Soc. Am. 81, 524–552 (1991).

    Google Scholar 

  19. Brown, J. M. & McQueen, R. G. J. geophys. Res. 91, 7485–7494 (1986).

    Article  ADS  Google Scholar 

  20. Anderson, O. L. Geophys. J. R. astr. Soc. 84, 561–579 (1986).

    Article  ADS  CAS  Google Scholar 

  21. Press, W. H., Flannery, B. P., Teukolsky, S. A. & Vetterling, W. T. Numerical Recipes in C (Cambridge Univ. Press, 1988).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tromp, J. Support for anisotropy of the Earth's inner core from free oscillations. Nature 366, 678–681 (1993). https://doi.org/10.1038/366678a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/366678a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing