Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Human xeroderma pigmentosum group D gene encodes a DMA helicase

Abstract

XERODERMA pigmentosum (XP), a genetically heterogeneous human disease, results from a defect in nucleotide excision repair of ultraviolet-damaged DNA. XP patients are extremely sensitive to sunlight and suffer from a high incidence of skin cancers. Cell fusion studies have identified seven XP complementation groups, A–G1–3. Group D is of particular interest as mutations in this gene can also cause Cockayne's syndrome and trichothiodystrophy4. The XPD gene was initially named ERCC2 (excision repair cross complementing) as it was cloned using human DNA to complement the ultraviolet sensitivity of a rodent cell line5. We have purified the XPD protein to near homogeneity and show that it possesses single-stranded DNA-dependent ATPase and DNA helicase activities. We tested whether XPD can substitute for its yeast counterpart RAD3, which is essential for excision repair and for cell viability6. Expression of the XPD gene in Saccharomyces cerevisiae can complement the lethality defect of a mutation in the RAD3 gene6, suggesting that XPD is an essential gene in humans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Cleaver, J. E. & Kraemer, K. H. in The Metabolic Basis of inherited Disease (eds Scriver, C. R., Beaudet, A. L., Sly, W. S. & Valle, D.) 2949–2971 (McGraw-Hill, New York, 1989).

    Google Scholar 

  2. De Weerd-Kasteline, E. A., Keijzer, W. & Bootsma, D. Nature 238, 80–83 (1972).

    Google Scholar 

  3. Vermeulen, W., Stefanini, M., Giliani S., Hoeijmakers, J. H. & Bootsma, D. Mutat. Res. 255, 201–208 (1991).

    Article  CAS  Google Scholar 

  4. Johnson, R. T. & Squires, S. Mutat. Res. 273, 97–118 (1992).

    Article  CAS  Google Scholar 

  5. Weber, C. A., Salazar, E. P., Stewart, S. A. & Thompson, L. H. EMBO J. 9, 1437–1447 (1990).

    Article  CAS  Google Scholar 

  6. Prakash, S., Sung, P. & Prakash, L. in The Eukaryotic Nucleus (eds Strauss, P. R. & Wilson, S. H.) 275–292 (Telford. Caldwell. New Jersey, 1990).

    Google Scholar 

  7. Matson, S. W., Kaiser-Rogers, K. A. A. Rev. Biochem. 59, 289–329 (1990).

    Article  CAS  Google Scholar 

  8. Sung, P., Prakash, L., Matson, S. W. & Prakash, S. Proc. natn. Acad. Sci. U.S.A. 84 8951–8955 (1987).

    Article  ADS  CAS  Google Scholar 

  9. Wilcox, D. R. & Prakash, L. J. Bact. 148, 618–623 (1981).

    CAS  PubMed  Google Scholar 

  10. Sung, P., Higgins, D., Prakash, L. & Prakash, S. EMBO J. 7, 3263–3269 (1988).

    Article  CAS  Google Scholar 

  11. Bunick, D., Zandomeni, R., Ackerman, S. & Weinman, R. Cell 29, 877–886 (1982).

    Article  CAS  Google Scholar 

  12. Sawadago, M. & Roeder, R. G. J. biol. Chem. 259, 5321–5326 (1984).

    Google Scholar 

  13. Feaver, W. J., Gileadi, O., Li, Y. & Komberg, R. D. Cell 67, 1223–1230 (1991).

    Article  CAS  Google Scholar 

  14. Conaway, R. C. & Canaway, J. W. Proc. natn. Acad. Sci. U.S.A. 86, 7356–7360 (1989).

    Article  ADS  CAS  Google Scholar 

  15. Schaeffer, L. et al. Science 260, 58–63 (1993).

    Article  ADS  CAS  Google Scholar 

  16. Gulyas, K. D. & Donahue, T. F. Cell 69, 1031–1042 (1992).

    Article  CAS  Google Scholar 

  17. Park, E. et al. Proc. natn. Acad. Sci. U.S.A. 89, 11416–11420 (1992).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sung, P., Bailly, V., Weber, C. et al. Human xeroderma pigmentosum group D gene encodes a DMA helicase. Nature 365, 852–855 (1993). https://doi.org/10.1038/365852a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/365852a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing