Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Complementation of byrl in fission yeast by mammalian MAP kinase kinase requires coexpression of Raf kinase

Abstract

INTRACELLULAR signalling from receptor tyrosine kinases in mammalian cells involves the activation of a signal cascade which includes p21ras and the protein kinases p74raf-1, MAP kinase kinase and MAP kinases1–8. In the yeasts Schizosaccharomyces pombe and Saccharomyces cerevisiae the response to mating pheromones requires the Spkl and KSS1/FUS3 kinases, which have sequence homology to vertebrate MAP kinases9–12. The recent cloning of complementary DNAs for mammalian13–15 and frog16 MAP kinase kinases has shown that they are homologous to the S. pombe Byr1 (ref. 17) and S. cerevisiae STE7 (ref. 18) kinases, which have been proposed to function upstream of Spk1 and KSS1/FUS3, respectively19–22. We have investigated whether these apparently similar kinase pathways are functionally conserved between vertebrates and S. pombe. We report here that expression of mammalian MAP kinase kinase alone fails to complement a byr1 mutant of S. pombe. When coexpressed with Raf kinase, however, MAP kinase kinase is activated by phosphorylation and the mating defect of the byr1 mutant is rescued. This suggests that the pathways are functionally homologous and that Raf kinase may directly phosphorylate and activate MAP kinase kinase.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Troppmair, J. et al. Oncogene 7, 1867–1873 (1992).

    CAS  PubMed  Google Scholar 

  2. Leevers, S. J. & Marshall, C. J. EMBO J. 11, 569–574 (1992).

    Article  CAS  Google Scholar 

  3. Thomas, S. M., DeMarco, M., D'Arcangelo, G., Halegoua, S. & Brugge, J. S. Cell 68, 1031–1040 (1992).

    Article  CAS  Google Scholar 

  4. Wood, K. W., Sarnecki, C., Roberts, T. M. & Blenis, J. Cell 68, 1041–1050 (1992).

    Article  CAS  Google Scholar 

  5. de Vries Smits, A. M. M., Burgering, B. M. T., Leevers, S. J., Marshall, C. J. & Bos, J. L. Nature 357, 602–604 (1992).

    Article  ADS  CAS  Google Scholar 

  6. Kyriakis, J. M. et al. Nature 358, 417–121 (1992).

    Article  ADS  CAS  Google Scholar 

  7. Howe, L. R. et al. Cell 71, 335–342 (1992).

    Article  CAS  Google Scholar 

  8. Dent, P. et al. Science 257, 1404–1407 (1992).

    Article  ADS  CAS  Google Scholar 

  9. Toda, T., Shimanuki, M. & Yanagida, M. Genes Dev. 5, 60–73 (1991).

    Article  CAS  Google Scholar 

  10. Courchesne, W. E., Kunisawa, R. & Thorner, J. Cell 58, 1107–1119 (1989).

    Article  CAS  Google Scholar 

  11. Elion, E. A., Grisafi, P. L. & Fink, G. R. Cell 60, 649–664 (1990).

    Article  CAS  Google Scholar 

  12. Elion, E. A., Brill, J. A. & Fink, G. R. Proc. natn. Acad. Sci. U.S.A. 88, 9392–9396 (1991).

    Article  ADS  CAS  Google Scholar 

  13. Ashworth, A., Nakielny, S., Cohen, P. & Marshall, C. Oncogene 7, 2555–2556 (1992).

    CAS  PubMed  Google Scholar 

  14. Crews, C. M., Alessandrini, A. & Erikson, R. Science 258, 478–480 (1992).

    Article  ADS  CAS  Google Scholar 

  15. Seger, R. et al. J. biol. Chem. 267, 25628–25631 (1993).

    Google Scholar 

  16. Kosako, H., Nishida, E. & Gotoh, Y. EMBO J. 12, 787–794 (1993).

    Article  CAS  Google Scholar 

  17. Nadin-Davis, S. A. & Nasim, A. EMBO J. 7, 985–993 (1988).

    Article  CAS  Google Scholar 

  18. Teague, M. A., Chaleff, D. T. & Errede, B. Proc. natn. Acad. Sci. U.S.A. 83, 7371–7375 (1986).

    Article  ADS  CAS  Google Scholar 

  19. Neiman, A. M. et al. Molec. biol. Cell 4, 107–120 (1993).

    Article  CAS  Google Scholar 

  20. Gotoh, Y. et al. Molec. cell. Biol. (in the press).

  21. Gartner, A., Nasmyth, K. & Ammerer, G. Genes Dev. 6, 1280–1292 (1992).

    Article  CAS  Google Scholar 

  22. Errede, B., Gartner, A., Zhou, Z., Nasmyth, K. & Ammerer, G. Nature 362, 261–265 (1993).

    Article  ADS  CAS  Google Scholar 

  23. Gómez, N. & Cohen, P. Nature 353, 170–173 (1991).

    Article  ADS  Google Scholar 

  24. Nakielny, S., Cohen, P., Wu, J. & Sturgill, T. W. EMBO J. 11, 2123–2129 (1992).

    Article  CAS  Google Scholar 

  25. Traverse, S., Gómez, N., Paterson, H., Marshall, C. & Cohen, P. Biochem. J. 288, 351–355 (1992).

    Article  CAS  Google Scholar 

  26. Matsuda, S., Gotoh, Y. & Nishida, E. J. biol. Chem. 268 3277–3281 (1993).

    CAS  PubMed  Google Scholar 

  27. Roberts, T. M. Nature 360, 534 (1992).

    Article  ADS  CAS  Google Scholar 

  28. Wang, Y., Xu, H.-P., Riggs, M., Rodgers, L. & Wigler, M. Molec. cell. Biol. 11, 3554–3563 (1991).

    Article  CAS  Google Scholar 

  29. Styrkarsdottir, U., Egel, R. & Nelsen, O. Molec. gen. Genet. 235, 122–130 (1992).

    Article  CAS  Google Scholar 

  30. Lange-Carter, C. A. et al. Science 260, 315–319 (1993).

    Article  ADS  CAS  Google Scholar 

  31. Basi, G., Schmidt, E. & Maundrell, K. Gene 123, 130–136 (1993).

    Article  Google Scholar 

  32. Egel, R. Planta 98, 89–91 (1971).

    Article  CAS  Google Scholar 

  33. Moreno, S., Klar, A. & Nurse, P. Meth. Enzym. 194, 795–823 (1991).

    Article  CAS  Google Scholar 

  34. Grimm, C., Kohli, J., Murray, J. & Maundrell, K. Molec. gen. Genet. 215, 81–86 (1988).

    Article  CAS  Google Scholar 

  35. Boyle, W. J., Van der Geer, P. & Hunter, T. Meth. Enzym. 201, 110–149 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hughes, D., Ashworth, A. & Marshall, C. Complementation of byrl in fission yeast by mammalian MAP kinase kinase requires coexpression of Raf kinase. Nature 364, 349–352 (1993). https://doi.org/10.1038/364349a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/364349a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing